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ABSTRACT Electric power system operators monitor large multi-modal data streams from wide service 
areas. The current data setups stand to get more complex as utilities add more smart-grid sensors to collect 
additional data from power system substations and other in-situ locations. We propose a methodology to 
utilize multi-modal data for automated power system fault prediction, and precursor discovery that takes 
advantage of not only the utility owned measurements but also an abundance of data from other related 
databases such as weather observation systems. The process is automated to help operators analyze multi-
modal data that may be impossible to process manually due to the size and variety. We automatically 
preprocess multi-source data and learn a joint latent representation from collocated streamed, sparse, and 
high-dimensional data collected from Phasor Measurement Units and external weather data. Then we utilize 
multi-instance learning to predict events and discover precursors simultaneously without relying on post-
mortem studies of fault signatures. We apply the proposed methodology to provide early predictions of faults 
in the U.S. Western Interconnection. AU-ROC of 0.94 is achieved in predicting events by utilizing 
information 5 hours before event time using season-specific models. We show how precursors can be 
extracted from multi-modal data and interpreted for predicted events. 

INDEX TERMS Big data, weather, event detection, event precursors, machine learning, phasor 
measurement units, power system faults, smart grids, time series analysis. 

I. INTRODUCTION 
With the deployment of Phasor Measurement Units (PMUs) 
and the introduction of various other monitoring and 
recording systems, the amount of available data in the power 
systems has reached a challenging level for utilities [1]. 
PMUs provide measurements at 30-120 frames per second 
for voltage and current phasors, as well as frequency and the 
rate of change of frequency. Such streaming data is critical 
when conducting post-mortem analysis of power system 
disturbances and failures, as well as for system restoration 
and predictive analytics. To fully exploit the value of such 
large datasets, new machine learning techniques are 
introduced that can provide more automated and proactive 
responses. In recent years, extensive efforts have been shown 
to develop data models utilizing PMU and other data to 
enhance power system event detection and classification, 
leading to improved power system resilience [2-9]. Utilizing 
data from different measuring systems (weather, PMU, etc.) 
can significantly improve the analysis of the current and 

future status of the power system. On the other hand, 
utilizing such measurements by power system operations is 
challenging due to the large size and hidden correlations not 
being easily captured and processed by operators.  
Power systems data models characterizing events can be 
categorized as reactive or predictive. Reactive models are 
triggered after the actual events happen and can be used for 
post-mortem analysis of events to learn what may have gone 
wrong and determine the correct course of action in the 
future. In such cases, the event has already happened, and 
data models assist in event post-mortem management, 
including event detection, classification, and intelligent 
alarm processing. In predictive models, data is used to 
anticipate the future status of the power system and allow 
power system operators the chance to react ahead of time to 
mitigate the impacts. We introduce a predictive model for 
anticipating power system faults ahead of time by identifying 
leading event precursors. This model utilizes multi-modal 
data in a sparse setting. 
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A. PROBLEM STATEMENT AND OBJECTIVES 
Effective event prediction and precursor discovery in a power 
system relies on understanding the internal state of the system 
and any external factors interacting with the system and 
affecting its state. Our hypothesis is that event prediction and 
precursor identification accuracy can be improved by 
collocating and combining data representing the power 
systems’ internal state with external factors affecting the 
system’s operations. For this purpose, the internal power 
systems’ state is represented by the PMU dataset, and the 
external factors by the weather affecting the power system.  
The design of a solution to event prediction and precursor 
discovery is constrained by the sparsity and complexity of the 
data multi-modal data and the lack of specified leading 
indicators and precursors. That can inform the model if an 
event might happen or when. Consequently, we address the 
following research questions:  

1. how to predict power system failures using sparse 
and multi-modal datasets representing the internal 
status and external factors affecting the power 
system, and  

2. how to design an automated prediction system for 
fault anticipation to provide time for power system 
operators to react with optimal mitigation measures   

These methods cover large spatial areas using sparsely 
mounted sensors providing streaming raw measurements. The 
objective is to feed complex and multi-modal data into 
automated systems to produce interpretable and actionable 
results. In summary, we provide a mathematical formulation 
to answer the following broad questions:  

1. when (event prediction): when an event will happen.  
2. why (precursors discovery): given a prediction, help 

power system operators identify specific examples 
or instances in large amounts of collected data, 
pointing to probable leading indicators of the 
provided prediction. 

B. RELATED WORK 
Several studies investigated PMU data for event detection 
and classification in power systems. An Extreme Learning 
Machine is used for a Fast variant of the Discrete S-
Transform feature extraction [2]. A dimensionality reduction 
technique is introduced for event detection [3]. A wavelet-
based method is also proposed to detect faults in PMU data 
[4]. Such methods rely on feature engineering and domain 
knowledge to design features. In automated feature learning 
and detection approach, Convolutional Neural Networks are 
used to detect faults from PMU data collected from the U.S. 
western interconnection [5]. Another method is also 
developed to detect and classify events using sparse PMU 
data [6]. Such methods use event signatures to detect events 
as they happen. Event prediction is studied in many other 
domains, such as the stock market, disease outbreaks, and 
crimes [7]. Methods used include regression, time series 
analysis, spatial analysis, and neural networks [7].  Example 

[8] uses a time series forecasting technique to predict events 
from simulated PMU data. A different approach, 
Collaborative Logistic Ensemble Classifier (CLEC), is 
introduced to classify events using weather forecasts [9]. 
While some of such approaches can predict events ahead of 
time using weather forecasts, very few, provide a 
methodology to identify event precursors. Some methods are 
developed to detect event precursors while at the same time 
estimating the likelihood of events. For instance, a 
methodology to predict labels for the events and at the same 
time, learn on the instance level is proposed in [10]. This 
methodology introduced the Group-Instance Cost Function 
(GICF) as a loss function that propagates information and 
distributes group labels to deep features. GCIF was expanded 
by introducing Nested Multi-Instance Learning (nMIL), 
where a nested data approach is used to distribute labels over 
multi-layered instances. nMIL allowed labels to be predicted 
at the group level and nested levels [11]. nMIL shows 
promising results when used to predict societal events using 
public social media data [11]. 

C. PURPOSE AND NOVELTY 
Event prediction, particularly fault prediction, is a critical task 
for power system control. It is an essential decision-making 
tool for control room operators that provides the time to plan 
mitigation measures to avoid or reduce the impact of forced 
outages. The power system monitoring data is dynamic, noisy, 
and exhibits many correlated factors. This burdens control 
room operators to analyze such correlated factors efficiently 
within an appropriate response time. Furthermore, correlating 
external data sources with internal datastores is inherently 
different from what the operators are tasked to do today. A 
large amount of such data makes the power system monitoring 
task even more challenging. Precursor analysis aims to 
identify important event anticipators before the actual event 
happens. Precursor analysis differs from event detection and 
classification since it focuses on what happened before the 
actual event, not the post-mortem event signature itself. Event 
precursors are important in understanding events that have 
often been discounted, dismissed, or never understood. Also, 
understanding precursors helps define near consequential 
events, which can help design better mitigation methods 
leading to more reliable power system operation. 
The novelty reported in this paper is in jointly using sparse 
PMU data and sparse weather data for event prediction and 
fault precursor discovery. We provide a methodology to 
automatically preprocess large amounts of high-dimensional 
spatiotemporal data to predict faults and identify the 
precursors, which to the best of our knowledge, has not been 
reported before. We achieve that goal by introducing 
automated methods to learn latent embeddings from complex, 
multi-modal, and high-dimensional spatiotemporal data. The 
learned embeddings can be used to detect events and provide 
event precursors. Furthermore, we use multi-instance learning 
(MIL) to formulate a joint event prediction and precursor 
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discovery model that does not rely on the pre-identification of 
specific leading indicators and precursors in the data. Rather, 
precursors are discovered as we develop and train the model. 

D. CONTRIBUTION AND ADVANTAGES 
There are several nuisances in event prediction and precursor 
discovery: (1) there are no standard out-of-the-box models 
for precursor discovery evaluation, compared to 
classification and forecasting where evaluation is more 
standardized, and (2) there are no labels for precursors, 
which is another challenging aspect for a machine learning 
model construction, and (3) there is no standard database 
syntax or semantics where the multi-modal datasets have 
standardized resolutions and representations.  
In practical utility field settings, additional challenges 
include a lack of information on PMU location and power 
network topology for confidentiality reasons, big data 
paradox (lots of data, but few data for events of interest), bad 
data, temporal and spatial data dependency problems, and 
data model interpretability. The advantages of the approach 
we describe are as follows: 

• tracking event prediction from raw streaming data 
allows proactive monitoring of the power system 
dynamic status progression compared to using 
triggered data for post-mortem reactive analysis. 

• providing power system operators with an 
automated prediction tool for interpreting large 
amounts of multi-modal data allows for making 
timely mitigation decisions. 

• defining a methodology for exploiting multi-modal 
data for fault prediction and precursor discovery in 
power systems using sparse PMU and weather data.  

• utilizing automated techniques to preprocess large 
amounts of high-dimensional spatiotemporal data 
to reduce data dimensionality without extensive 
data wrangling and feature engineering. 

• deploying multi-instance learning, where labels for 
precursors are not required, and information can be 
propagated through the data to predict labels and 
discover precursors. 

E. PAPER ORGANIZATION 
The remainder of this paper is organized as follows. Section II 
describes the methodology used for fault prediction and 
precursor discovery. Section III discussed the data used and 
preprocessing steps conducted. Section IV presents the 
experimental setup and results. Section V concludes the paper 
and section VI discusses future work. We provide two 
appendices to discuss the details of various data-related tasks. 
References are provided at the end.  
 
II. EVENT PREDICTION AND PRECURSOR DISCOVERY 
The intuition behind our formulation for power system event 
detection is similar to multi-instance learning (MIL). In MIL, 
the labels are assigned to the bag level where individual 

instances inside the bag do not have explicit labels. In MIL, 
trained classifiers aim to learn labels for the individual 
instances inside the bags. In a power system setting, for an 
event at time 𝑡, data for 𝑘 hours before 𝑡 is used and considered 
the bag. Data inside the bag can be further grouped depending 
on the modeling choice and application.  
There are two important distinctions between what is 
presented in this paper and event detection: 

1. event signature at time 𝑡 is not used. In event 
detection, the actual signature at the time of the event 
is used to train a model to distinguish events from 
non-events. Here, we are interested in predicting 
events ahead of time and identifying significant 
precursors. This task is performed without the use of 
actual event signatures. Formally we define the time 
period for an event at time 𝑡 as [𝑡 − 𝑘, 𝑡) to indicate 
the exclusion of time t. 

2. individual instances of data inside the bags are 
unlabeled. In the current formulation of the problem, 
labels are assigned only to the bag level. Data 
instances within the bag are not assigned any labels 
at training time. Here, we aim to identify precursors 
from individual instances despite their lack of labels. 

A. EVENT PREDICTION MODEL 
This section introduces the basic information propagation 
learning paradigm utilizing multi-instance learning. Then 
two models are discussed, namely GICF and nMIL, where 
nMIL is considered an extension of GICF. Lastly, using 
these models, we introduce the precursor discovery 
methodology. 
1) INFORMATION PROPAGATION THROUGH MULTI-
INSTANCE LEARNING  
For each event 𝕐! ∈ 𝒴, where 𝕐! occurs at time 𝑡!, we 
collect bags of data 𝔹! ∈ ℬ where each bag 𝔹 represent data 
in the time period [𝑡! − 𝑘, 𝑡!). Data representing 𝔹 is 
collected from multiple sources (i.e., PMU, weather, etc.). In 
its basic representation, each bag 𝔹 represents an unordered 
set of data instances {𝑥"}. A label is assigned for 𝕐! ∈ {0, 1} 
where 1 indicates that an event occurred at time 𝑡 and 0 
indicates that no events occurred at time 𝑡!. As discussed in 
section II, actual event data at time 𝑡# is not utilized in this 
study. When we discuss event precursors, we aim to identify 
individual data instances (𝑥") which have great importance 
in predicting events 𝕐! ∈ 𝒴.  
We are given a training set 𝔇, which consists of a set of data 
bags 𝔹! ∈ ℬ and their associated labels 𝕐! ∈ 𝒴. 𝔇 is 
formally defined as: 
 

𝔇 = {(𝔹!, 𝕐!)}	!	%	&,...,) (1) 
 
and 𝑁 = |𝒴|. We train an unknown function ℱ with 
parameters 𝑤, where: 
 

ℱ(𝔹!|𝑤) →	𝕐!	∀	𝑛	 ∈ [1, 𝑁]. (2) 
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𝔹! represents an unordered set of instances {𝑥"}	. Each 
instance 𝑥" represents a data vector collected for the time 
period [𝑡! − 𝑘, 𝑡!). In this setting, data vectors can be PMU 
data, weather data, or other data types. The ℱ function is 
modeled as a logistic binary classifier on the instance level, 
and 𝑤 is a learned weight vector. In logistic functions, ℱ 
learns a probabilistic mapping learned from target labels 𝕐 ∈
𝒴. Each vector 𝑥" is assigned a probability 𝑝" that represents 
its relation to the target label 𝕐.  Hence, 𝑝" is defined as: 

𝑝" = σ@w*x"C =
1

1 + 𝑒+,!-"
 (3) 

 
where σ is the sigmoid function. Here, labels yG" can be 
inferred for 𝑝" using pre-assigned thresholds. As discussed 
in section II, there are no ground truth labels for the instance 
level. The predicted label 𝕐H! 	 ∈ [0, 1] is calculated by 
examining the probability value ℙ!, where ℙ! is calculated 
by applying an aggregation function 𝒜 on 𝑝" 	∀	𝑥" 	 ∈ 		𝔹!. 
More formally: 
 

ℙ! = 	𝒜(ℱ(𝔹!|𝑤)) (4) 
 
The goal of the function ℱ is to assign probabilities to 
individual instances 𝑥" using information propagation from 
bag labels 𝕐! to predicted instance labels yG". This 
information propagation is controlled through a specialized 
cost function 𝒥(𝑤). Furthermore, using the learned labels yG" 
for individual instances 𝑥", we train the classifier to infer 
labels for unseen bags as well as labels of the individual 
instances of the unseen bags. The cost function 𝒥(𝑤) is the 
key tool to control information propagation from bag labels 
𝕐! to instance labels yG" which constructs predicted bag 
labels 𝕐H!. Sections II.A.2 and II.A.3 discuss two specific 
cost functions 𝒥(𝑤).  
2) GROUP-INSTANCE COST FUNCTION (GICF) 
The first cost function 𝒥(𝑤) we consider is the Group-
Instance Cost Function (GICF), which combines bag costs 
and instance similarity costs. GICF is defined as the sum of 
bag level error and instance similarity costs. GCIF aims to 
distribute information from bag labels 𝕐! down to individual 
instances 𝑥". The assumption behind instance similarity costs 
is that similar instances (measured through a similarity 
function) should have relatively similar probabilities.  
Formally, equation 5 defines the cost function of GICF as: 
 

𝒥./01(𝑤) = 	𝒥(𝑤)234 + 𝒥(𝑤)/!563!78 (5) 
 
where 𝒥(𝑤)234 is defined as  
 

𝒥(𝑤)234 =
𝜆
𝑁M∆&@𝕐!, 𝕐H!C

)

!%&

 (6) 

 
and 𝒥(𝑤)/!563!78 is defined as 

 

𝒥(𝑤)/!563!78 =
1
𝐵9MM𝒦@𝑥# , 𝑥"C∆9@yG# , yG"C

2

"%&

2

#%&

 (7) 

 
𝜆 is a balancing factor between group penalty and instance 
penalty and 𝐵 = |𝔹!|. In instance level costs, 𝒦 is used as a 
similarity function and ∆ represents a non-negative penalty of 
the difference of values. In this formulation, we are controlling 
probabilities while at the same time examining similar 
instances through 𝒦. Here 𝒦 can be cosine similarity, radial 
basis function (RBF), or other similarity functions. To define 
∆, we can use functions such as squared loss or log-loss. In 
conducted experiments, we use cosine similarity for 𝒦 and 
squared loss for ∆&, ∆9. Squared loss is formally defined as: 
 

∆&(𝑎, 𝑏) = ∆9(𝑎, 𝑏) = (a − b)9 (8) 
 
where 𝑎	and 𝑏 are arbitrary values.  
3) NESTED MULTI-INSTANCE LEARNING (nMIL) 
The second cost function 𝒥(𝑤) we consider is Nested Multi-
Instance Learning (nMIL). This cost function extends GICF 
and introduces a nested data approach. The main advantage 
of introducing a nested approach is to account for temporal 
dependencies within the bag. A bag 𝔹 in its basic definition 
represents an unordered set of data instances 𝑥". nMIL 
adjusts the definition of the bag from an unordered set of 
instances {𝑥"} to a set of ordered temporal groups 𝔹 = [𝒳#], 
where 𝒳# represents a temporal grouping (hourly) for a data 
collection 𝒳# = {𝑥#"} and 𝑥#" represents data instances at 
grouping time 𝑖 for the j-th data source. Fig. 1 shows the data 
representation with temporal groups 𝒳6 and their associated 
probabilities 𝑃#. Furthermore, Fig. 1 shows the data history 
and prediction leadtime for an event using the nested data 
modeling described earlier. 
nMIL introduced a nested temporal cost, which accounts for 
temporal dependencies. This relies on the assumption that 
consecutive temporal groups 𝒳6 have similar probabilities 
𝑃# .	The assumption is that the temporally adjacent instances 
will hold similar information and thus should have similar 
probabilities.  nMIL penalizes temporal relations through a 
specific function 𝑔, which utilizes temporal dependency of 
data and ensures that the temporally adjacent instances hold 
similar information (measured through 𝒦) and consequently 
have similar probabilities. In nMIL,  𝑔 is defined as:  
 

𝑔 = 	𝒦(𝒳# , 𝒳#+&)	∆9(𝑃# , 𝑃#+&) (9) 
 
where 𝑃6 (temporal grouping probabilities) is defined as an 
aggregate (using 𝒜) of instance level probabilities for a 
temporal group 𝒳#, formally defined as: 
 

𝑃# = 	𝒜(ℱ@𝑥#" 	 ∈ 	𝒳#Y𝑤C) (10) 
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Since nMIL introduces temporal groups, the definition of ℙ! 
changes to: 

ℙ! = 	𝒜(𝑃#) (11) 
 
In addition, nMIL regularized loss by adding unsupervised 
hinge loss ℎ and the L2 regularization term 𝛾𝑅(𝑤). 𝒥!:/;(𝑤) 
is a sum of bag loss, sequential instance loss, and 
regularization loss. Formally, equation 12 defines the cost 
function of nMIL.  
 

𝒥!:/;(𝑤) = 𝒥(𝑤)234 + 𝒥(𝑤)/!563!78
+	𝒥(𝑤)<84 (12) 

 
where 𝒥(𝑤)234, 𝒥(𝑤)/!563!78, 𝒥(𝑤)<84 are defined as: 
 

𝒥(𝑤)234 =	
𝜆
𝑁M∆=@𝕐!, 𝕐H!C

)

!%&

 (13) 

  

𝒥(𝑤)/!563!78 =	
1
NM

1
𝑡M𝑔@𝒳#,6 , 𝒳#,6+&C

>

6%&

2

#%&

 (14) 

  

𝒥(𝑤)<84 = M
1
𝑇M

1
𝐵Mℎ(𝑥#" , 𝑤)

2

"%&

>

#%&𝔹∈ℬ
	𝒳#∈𝔹
-#"	∈		𝒳#	

+ 	𝛾𝑅(𝑤) 
(15) 

  
where ℎ represents instance level hinge loss, here, ℎ is 
formally defined in equation 16. mC, 𝑝C are hyperparameters 
and 𝑠𝑔𝑛 is the sign function.  
 
ℎ(𝑥#" , 𝑤) = max	(0,mC − 𝑠𝑔𝑛@𝑝#" − 𝑝CC𝑤>𝑥#") (16) 

 
Lastly, ∆= is defined as: 

 (17) 
∆=@𝕐!, 𝕐H!C = −(𝕐! log(ℙ!) + (1 − 𝕐!) log(1 − ℙ!)) 

 

The aggregate function 𝒜 is defined as the arithmetic mean of 
the values. The loss functions are optimized using stochastic 
gradient descent with mini batch.  
4) PRECURSOR DISCOVERY 
Precursors are selected after an event is identified. In 
precursor discovery, we utilize nMIL since it accounts for 
temporal dependencies and has better regularization. To 
select precursors, we examine the probabilities 𝑝#" of 
individual instances 𝑥#" where 𝕐H! = 1. Then we use a 
threshold 𝜂 to determine if an individual instance is 
considered a precursor. If 𝑝#" ≥ 𝜂, then 𝑥#" is a potential 
precursor. 
 
III. DATA MANAGEMENT 
Data management is an integral and important part of this 
approach. One of the main goals is to utilize multi-modal data 
sources for event prediction and precursor discovery without 
manual feature engineering. In this section, the two datasets 
used are described. Furthermore, the performed preprocessing 
steps on each dataset are discussed.  Lastly, we discuss how 
we used deep representation learning to produce a unified 
lower dimensional and less noisy latent data representation.  

A. DATA DESCRIPTION 
This study utilizes two datasets, namely: PMU data and 
weather data.  
1) PMU DATA 
PMUs are sensors that monitor the power system sparsely. 
PMUs inputs are streams of samples taken from voltage and 
current signals describing the properties of the system. 
Usually, PMUs output the magnitude, angle, and frequency of 
the observed signals Through a transformation from sample to 
phasors. The output phasors are also post-transformed into a 
single positive sequence voltage or current. In addition, PMUs 
output the power system’s fundamental frequency and rate of 
change of frequency readings. The data is synchronized in 
real-time between different locations using the timing clock 
signal obtained from Global Positioning System (GPS), which 
also reports precise UTC reference. PMUs report phasor data 

FIGURE 1. Data flow for event detection and precursor discovery. History represents how much data is used to predict an event. 
Leadtime represents the difference between the most recent data point used and the actual event time. 



 

VOLUME XX, XXXX  

at high frequency, usually between 30Hz or 60Hz, and at an 
even higher rate.  
PMU data is collected from 38 PMUs in the Western 
Interconnection in the United States. This dataset is 
proprietary and provided by the Department of Energy (DOE) 
for research purposes. This dataset is completely anonymized.  
to protect critical power system topology and infrastructure. 
The anonymization process included withholding all 
topological information, including PMU locations, which 
added significant challenges to this study.  
PMUs collect PMU data at unknown locations for the years 
2016 and 2017 and report data at 30Hz to 60Hz rates. Due to 
the high reporting rates and extended recording time, the 
resulting data file size for the two years of the U.S. Western 
Interconnection analyzed in our study is 6.87 Terabytes. 
The PMU data used here has several challenges. The missing 
information about the power system topology (buses, voltage 
levels, etc.) and unknown PMU locations limited the ability to 
study events with specific spatiotemporal correlations. Since 
the PMU locations are undisclosed, we do not know the 
specific location or how far from the occurrence of an event a 
PMU is located.  
For local events such as faults, some electrical signal 
properties caused by event occurrence are less prominent if 
measured at a distance from the event occurrence, but might 
be detected by considering multiple PMUs across vast 
geographical areas. We utilize this data property to learn a 
unified representation of PMU data. The representation 
learning process is introduced in Section II.C. The PMU 
dataset introduces a measurement sparsity problem, where it 
is known that the Western Interconnection has approximately 
20,000 buses. The provided set of PMUs may have been 
unevenly collected covering certain areas much more densely 
than others. PMUs report multiple measurements 
simultaneously. In the current dataset, the data reporting rate 
is unified at 30Hz. 
2) WEATHER DATA 
Weather is an important factor when studying power system 
events. There are several sources of public weather data. We 
use weather data extracted from publicly available Automated 
Surface Observing Systems (ASOS) datasets [12]. ASOS is a 
joint effort of the National Weather Service (NWS), the 
Federal Aviation Administration (FAA), and the Department 
of Defense (DOD). ASOS contains weather data from more 
than 900 sites in the United States. The exact location of each 
weather station is known. ASOS data is reported on multiple 
resolutions, such as every 1-minute and 5-minutes. This 
resolution enables the reporting of rapidly changing weather 
conditions. ASOS stations report several basic measurements 
such as temperature, pressure, and sky conditions. We use the 
following weather measurements: air temperature in 
Fahrenheit, dew point temperature in Fahrenheit, wind 
direction in degrees from north, wind gust in knots, wind gust 
direction, visibility in miles, atmospheric pressure, 
precipitation total, and wind speed in knots. 

B. DATA PREPROCESSING 
As described in section III.A, we integrate information from 
two different datasets and each one comes with its reporting 
rate, dimensionality, and spatial settings. We unify the 
temporal resolution and address the missing spatial data in the 
following preprocessing steps.  
1) GEOGRAPHICAL AREA SELECTION 
For the case study, we consider the entire Western 
Interconnection service area which contains 136,000 miles of 
transmission lines, and spans 1.8 million square miles across 
14 western U.S. states, in addition to parts of Canada and 
Mexico [13]. PMUs provide streaming data with sparse 
geographical area coverage. This characteristic of PMU data 
still allows for event prediction across sparse areas without the 
need to collect data from thousands of granular power system 
nodes (substations). For faults detection and precursors 
discovery we consider two important aspects of the selected 
region: (1) this area has diverse climatological topography, 
and (2) weather plays an important role in affecting power 
system stability [13]. Therefore, in addition to data from 38 
PMUs described in Section A.1 we utilize a subset of weather 
data described in Section A.2 obtained from 529 weather 
stations distributed across the geographical area of the 
Western Interconnection.  
2) SELECTING EVENTS OF INTEREST 
Events are outages in the power system have effects on the 
stability of the power system as well as impacts on the power 
system users. The contributors of the PMU data accompanied 
the data with an event log. We utilize outage event set ℰ from 
this event log provided for years 2016 and 2017 (those years 
are the years we have obtained PMU data for). For each event 
in the event set ℰ we select a time period [𝑡#+D , 𝑡#)	around it. 
When selecting events, we rely on the following criteria: 

1. selecting transmission line events.  Transmission line 
forced outages affect large geographical areas and 
can directly impact power system users. 

2. filtering out maintenance and planned outages. 
Planned and maintenance events are not of interest 
since they are scheduled well ahead of time and do 
not need to be predicted 

3. selecting non-overlapping events. This includes the 
period before the event 𝑡#. Since we are interested in 
the period [𝑡#+D , 𝑡#)	before the event, we ensure that 
the period [𝑡#+D , 𝑡#) which leads to the event does not 
contain any other events. This is done by cross-
referencing time intervals of known events. 

One important characteristic of the provided event logs is the 
complete lack of geographical information about the events. 
We were given neither the absolute nor relative locations of 
events. This limitation is introduced by the contributors of the 
PMU data, which presented a sparsity challenge for event 
detection and precursor discovery.  
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3) WEATHER DATA AGGREGATION 
ASOS network has more than 900 stations in the United 
States, and we selected 529 of them for this study. This large 
amount of spatiotemporal data introduces challenges in 
predictive modeling. To mitigate the sparsity challenge for the 
weather data, we aggregate the weather data using the U.S. 
climatological divisions. Appendix I describes the process of 
aggregation. The climatological divisions divide the U.S. 
lower 48 states into geographical areas with similar weather 
conditions [14]. Using climatological division data proved 
useful in energy application research [14]. The National 
Oceanic and Atmospheric Administration (NOAA) publishes 
detailed maps of the climatological divisions [15]. We used 
these divisions to aggregate the weather stations’ readings 
from weather stations in the same climatological divisions. 
Using this aggregation process, we lowered the number of 
spatial weather readings from 529 selected stations to 80 
climatological divisions of interest. The 80 climatological 
divisions of interest were the divisions that intersect the 
Western Interconnection service area. 

C. DATA REPRESENTATION LEARNING 
Each data set (PMU data and weather data) has its own unique 
characteristics. This multi-modal data introduces several 
challenges to detection models: 1) different data reporting 
rates, and 2) the curse of dimensionality, where the high 
dimensionality, sparsity, and high reporting rates lower the 
effectiveness of downstream tasks and obscure relevant and 
important data characteristics 3) noisy and missing data 
remains a challenge even after the preliminary preprocessing 
steps. Representation learning is one common method used to 
handle data complexity issues. 
Representation learning has been used across domains for 
many downstream tasks. Representation learning aims to learn 
latent low-dimensional representations of the original data, 
where the latent representations preserve the information 
within the original data and present it in a compact form, 
which eliminates the need to design and extract features from 
raw data manually. This is a useful property since feature 
engineering can be a time consuming task if done by subject 
matter experts. The deep learning models learn data-driven 
representations without requiring manual feature engineering. 
One category of representation learning is unsupervised 
representation learning, where latent representations are 
learned without the need for explicit labels or a specific 
downstream task. This type of representation learning is 
particularly useful in the datasets we are using since there are 
no labels on any of the individual data instances. Unsupervised 
representation learning is well-studied in computer vision and 
natural language processing domains [16].  
Time series introduces additional problems to representation 
learning, such as high dimensionality, high frequency, and 
non-stationary. Temporal Neighborhood Encoding (TNC) 
was introduced to learn unsupervised representation for non-
stationary and multivariate time series [16]. TNC utilizes 

stationary properties within temporal neighborhoods to define 
a distribution of similar windows. TNC utilizes statistical tests 
to define the boundaries of neighborhoods. To overcome 
potential bias when sampling negative data, TNC utilizes 
Positive Unlabeled Learning.  
TNC learns a latent representation for each window 𝑊E	 of 
data of length 𝛿 centered around time 𝑞. TNC learns an 
encoder 𝐸𝑛𝑐(∙):  
 

𝐸𝑛𝑐 m𝑊E
[G×I]n →	𝑊oE

[GK×&] (18) 
 
which maps a window of size [𝑑 × 𝛿] (d is the dimensionality 
of the time series) to a latent representation 𝑊o  of size [𝑑r × 1]. 
The encoding size 𝑑r is pre-set before training. After encoding, 
TNC learns a discriminator 𝐷𝑒𝑠(∙) that estimates the 
probability of two encodings 𝑊o&,𝑊o9 to belong to the same 
neighborhood. TNC uses a multi-headed binary classifier for 
𝐷𝑒𝑠(∙). For the 𝐸𝑛𝑐(∙) specifics, TNC is agnostic to its design. 
We use a Recurrent Neural Network (RNN) for the encoder 
with a multi-layer Gated Recurrent Unit (GRU). We use two 
layers with a hidden size of 100. Since TNC is an unsupervised 
representation learning model, the quality of the encodings is 
assessed by examining the performance of 𝐷𝑒𝑠(∙). The 
performance of the 𝐷𝑒𝑠(∙) is examined separately from 
downstream tasks.  Each dataset is embedded separately into 
a new feature space. When extracting the final representation, 
the 𝐷𝑒𝑠(∙) is not used as the 𝐷𝑒𝑠(∙) is just used to control the 
learning process. The final embeddings are extracted by using 
the trained 𝐸𝑛𝑐(∙) using the penalties imposed by the 𝐷𝑒𝑠(∙). 
1) EMBEDDING PMU DATA 
PMU data consists of three time series measurements (𝑉, 𝐼, 𝑓) 
measured from 38 PMUs. The embedding is done by 
measurement (feature). For each measurement {𝑉, 𝐼, 𝑓}, we 
use a different TNC model to learn a new representation of it. 
For each input window 𝑊, of the model size is [𝑑 × 𝛿] where 
𝑑 = 38. Embedding size 𝑑r is set at 60, which proved effective 
for different applications [16] and showed good performance 
using this data. 𝛿 can be adjusted to control the window being 
represented, but there are caveats when choosing 𝛿. If 𝛿 is too 
big, the window crosses neighborhoods and the representation 
is not yielding good results for the 𝐷𝑒𝑠(∙). On the other hand, 
a very small 𝛿 is very sensitive to local changes in the time 
series and is not producing good results for the 𝐷𝑒𝑠(∙). After 
consulting with domain experts, we designed the embeddings 
to represent 1 hour of data. The final embedding is of size 
[60 × 1] for each 1 hour of data for one feature.  
A major issue faced when embedding the PMU data is its sheer 
size. At the original reporting rate (30Hz), each hour of data 
for one signal has more than 4 million data points for 38 PMUs 
(30Hz × 3600sec × 38 PMUS). This large size causes two 
issues: (1)  embedding size per hour is not rendering good 
accuracy for the 𝐷𝑒𝑠(∙), even with parameter tuning and more 
complex 𝐸𝑛𝑐(∙), and (2) run times for the embedding model 
are not feasible, even when using high-end scientific cloud 
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computing equipment (4x NVIDIA Tesla V100 GPUs with 
NVlink2, code is utilizing the GPUs when running, with 
512GB of RAM). Using this equipment, the run time took 
around a week per experiment when doing parameter tuning, 
which is infeasible when developing models. To resolve this 
issue, we downsampled the data. Previous studies [5, 6, 17] 
show that PMU data can be downsampled for various 
applications without sacrificing the performance of 
downstream tasks. We use the Largest Triangle Three Buckets 
(LTTB) [18] to downsample PMU data. LTTB showed 
effectiveness in downsampling in multiple applications 
without losing any visual or inherent data characteristics. 
Using LTTB, we performed two downsampling experiments: 
downsampling to 60 samples/min and downsampling to 1 
sample/min. Appendix II discusses examples of downsampled 
PMU data, and how effective LTTB is in downsampling data 
without losing its characteristics.  
Visually, both variations of the downsampled datasets are 
satisfactory. When applying representation learning, the best 
performing dataset was the 1 sample/min. This was shown by 
examining the accuracy of the 𝐷𝑒𝑠(∙) and stability through the 
execution epochs. Fig. 2 shows the embedding performance of 
the two datasets. Fig. 2 diagram 1 shows the embedding 
performance using 1 sample/min for 𝑓. The graph shows that 
we had stable accuracy through the epochs and no 
underfitting. Diagram 2 in Fig. 2 shows the embedding 
performance for 60 samples/min, which had unstable 
performance. Both experiments used the same number of 
epochs (150). The behavior shown in Fig. 2 is compatible with 
the expected behavior from TNC and embedding models in 
general. TNC focuses on extracting compressed latent 
representations out of the raw data. Suppose TNC is applied 
to a higher frequency of data. In that case, the fundamental 
latent representations will be obscured by noise and local data 
fluctuations, which embeddings are trying to overcome.  
2) EMBEDDING WEATHER DATA 
Weather data was embedded similarly to PMU data. Each 
weather measurement is embedded separately, which results 
in each hour of data being represented as one embedding 
vector (𝑑r = 60). In the dataset we use, weather data is 
reported every 5 mins, which results in reasonable TNC 
model learning times. The final embedding is of size 
[60 × 1] for 1 hour of data for each weather measurement. 
The final dataset is grouped by the hour from the two data 
sources. The total number of embedding vectors from all 
datasets is 12, with each hour represented by [60 × 12] 
matrix. 
 
IV. EXPERIMENTAL EVALUATION 

A. PREDICTION MODELS 
We used three models, two of which are GICF and nMIL, 
which are introduced in sections II.A.2 and II.A.3, 
respectively. In addition, Logistic Regression (LR) is used as 
a baseline model. For comparison with the other models, we 

use LR with a Single Instance Learning (SIL) approach to 
learning (LR-SIL). In this approach, we distribute bag labels 
𝕐! to instances 𝑥" and train the LR model. When calculating 
bag labels, we use the 𝒜 to aggregate 𝑝" for bags and infer 
labels 𝕐H!. 

Diagram 1 
 
 
 
 
 
 
 
 
 
 
 
 

 
Diagram 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 2. Performance of TNC embedding for f using 1 sample/min 
(Diagram 1) and 60 samples/min (Diagram 2).  

B. EXPERIMENTAL SETUP 
1) DATA SPLIT  
The models are evaluated using two years of data from 2016 
and 2017. All data from the two sources are preprocessed as 
described in section III.B. The data is split into training and 
testing datasets. The dataset is split temporally to capture 
seasonal patterns throughout the year and ensure the testing is 
performed on equal ground. We introduce two modeling 
scenarios, namely the global model and the seasonal model. In 
the global model, the data for the year 2016 is used for 
training, and the 2017 data is used for testing. In the seasonal 
model, four different models are trained and evaluated. Each 
of the four seasonal models is specialized for a specific season 
(Summer, Fall, Winter, Spring), where for example the Spring 
of 2016 is used for training, and the Spring of 2017 is used for 
testing. In the seasonal model, the season of 2016 is used for 
training, and the same season of 2017 is used for testing. In 
both seasonal and global models, the same geographical area 
of the Western Interconnection is used. The reason behind the 
seasonal models is to determine if season-specific models can 
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further improve detection results in such a sparse setting. The 
number of positive cases corresponding to known power 
system events per the event log of the two years is 179. We 
supplemented these data with 204 negative cases where there 
are no events. The negative cases were selected by cross-
referencing known event logs and ensuring that the periods do 
not contain or overlap with any known event. The negative 
events were selected from both years. 
2) MODEL PARAMETERS  
𝑘 is set to 5 hours and used to extract the time periods used for 
training and testing. The value of 𝑘 is chosen after consulting 
with SMEs. The embedding dimension size 𝑑r is set to 60. 
Using guided hyperparameter tuning, 𝜆 is set to 2, 60 for nMIL 
and GICF, respectively, the batch size is 25, and the learning 
rate for mini batch is 0.01. For nMIL regularization mC and 𝑝C 
is kept at the default 0.5 and 𝛾 is set to 0.25. Except for mC, 𝑝C, 
all other hyperparameters are set through experiments. For 
LR-SIL, a linear solver with L2 penalty and C=0.0001 is used. 
3) EVALUATION METRICS 
We report precision and recall to evaluate the correctness of 
the used models. One of the main goals is to help power 
system operators navigate large amounts of data and for the 
proposed methodology to behave like an early warning 
system. By reporting precision and recall, we see how the 
model is measuring false positives and false negatives. The 
relevance of the probabilities of the events to the predictions 
is measured by reporting the Area Under the Receiver 
Operating Characteristic curve (AU-ROC). Since we have a 
slight imbalance in the data, we also reported Area Under the 
Precision-Recall Curve (AU-PRC). AU-ROC and AU-PRC 
provide a measure of robustness and tuning flexibility of the 
models, which are important in practical settings. 

C. EVENT DETECTION PERFORMANCE 
The performance of the event prediction is evaluated using the 
data split and metrics discussed in sections IV.B.1 and IV.B.2. 
This section discusses the performance of event detection 
using the seasonal and global models, as well as how early the 
model can detect events and how much data is needed. The 
last part of this subsection discusses the precursor discovery 
results and shows how they can be applied in practice. The 
results from the global model are shown in Table I. During the 
experiments, we faced issues with the sensitivity of the 
detection models. To assess this, we conducted experiments 
using all the features we have and a search for best performing 
groups of features. Table I shows the prediction results of the 
best performing feature groups. Group 1 (G1) represents PMU 
voltage, wind gust, pressure, and precipitation. G2 represents 
wind gust, precipitation, air temperature, PMU voltage, PMU 
current, and PMU frequency. G3 represents all weather 
parameters considered and PMU voltage. We believe that the 
results presented here are in line with the behaviors expected 
from logistic-based models. Logistic models tend to overfit 
when there are correlations between input parameters. G1 
represents a small subgroup of available features. The original 

set of features has inherent correlations between them. For 
example, system frequency is not a measured feature but 
rather a calculated feature based on voltage and current. In 
addition, weather measurements such as wind speed, wind 
gust, and pressure are correlated. In this application, using 
methodologies such as Principal Component Analysis for 
feature reduction would not be helpfull since learned features 
cannot be explained and related to precursor analysis.  Table I 
shows that the best-performing global model was nMIL, 
described in section II.3, using feature group G2 described in 
Section III (though all groups that combine weather and PMU 
data have comparable results). The combination of power 
system information (PMU data) and weather data provided the 
most information. The high Recall shows that this model can 
positively detect events, which can help operators identify 
events. In addition to the discussed groups, in Table I we also 
show the performance of uni-modal data demonstrated by just 
using PMU data (frequency 𝑓 or the voltage 𝑉) or just using 
weather data (W).  

TABLE I 
MODELS PERFORMANCE FOR GLOBAL MODEL 

Model Features AU-ROC AU-PRC Precision Recall 

nMIL 

G1 0.721 0.762 0.763 0.632 
G2 0.728 0.795 0.849 0.530 
G3 0.729 0.800 0.777 0.624 
f 0.593 0.674 0.690 0.419 
V 0.665 0.735 0.733 0.539 
W 0.665 0.665 0.765 0.640 

GICF 

G1 0.705 0.752 0.742 0.615 
G2 0.709 0.758 0.761 0.598 
G3 0.690 0.760 0.768 0.624 
f 0.588 0.678 0.734 0.496 
V 0.665 0.749 0.706 0.410 
W 0.683 0.746 0.713 0.577 

LR-SIL 

G1 0.642 0.759 0.849 0.239 
G2 0.656 0.762 0.800 0.410 
G3 0.670 0.772 0.810 0.291 
f 0.522 0.599 0.364 0.034 
V 0.634 0.689 0.750 0.231 
W 0.648 0.759 0.753 0.470 

Bold values represent the best for each model. Bold and underlined 
values represent the best overall.  
Table II shows results using the seasonal setup for the best 
performing model from Table I (nMIL). Here, four different 
seasonal models were trained and tested. From Table II, 
seasonal models significantly improved the performance 
compared to the global model. For example, the Fall and 
Winter models using G1 showed 31% and 27% improvement 
respectively in AU-ROC compared to the global model for the 
same feature group. Fig. 3 shows the ROC for nMIL of the 
Fall model.  Seasonal models show significant improvement 
in AU-PRC, and high scores for precision and recall show that 
the model has higher precision and higher recall. This 
improvement in results can be explained by reduced 
heterogeneity of weather data conditions within seasons, 
where embedding and detection models were able to better 
capture the season-specific behaviors. Furthermore, the 
weather has much more effect on grid stability in the Winter 
months, and power grid events can be more predictable.  
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Table I and Table II show that adding external data sets (such 
as weather data) can improve models’ detection performance 
compared to using only PMU data. Furthoremore and across 
all models, we saw gains in performance by using multi-modal 
data (G1, G2, G3) compared to uni-modal data (V, f, W). 

TABLE II 
PERFORMANCE FOR SEASONAL MODEL 

Season Features AU-ROC AU-PRC Precision Recall 

Winter 

G1 0.922 0.898 0.609 0.933 
G2 0.850 0.738 0.565 0.867 
G3 0.881 0.803 0.769 0.667 
f 0.733 0.679 0.588 0.667 
V 0.814 0.687 0.500 0.933 
W 0.833 0.671 0.700 0.933 

Spring 

G1 0.870 0.929 0.923 0.783 
G2 0.884 0.933 0.919 0.739 
G3 0.866 0.925 0.861 0.804 
f 0.593 0.778 0.659 0.630 
V 0.791 0.865 0.906 0.630 
W 0.853 0.922 0.857 0.782 

Summer 

G1 0.705 0.735 0.813 0.406 
G2 0.818 0.888 0.821 0.718 
G3 0.793 0.845 0.815 0.688 
f 0.635 0.695 0.615 0.250 
V 0.780 0.857 0.909 0.313 
W 0.779 0.772 0.789 0.468 

Fall 

G1 0.944 0.985 0.947 0.750 
G2 0.847 0.957 0.933 0.583 
G3 0.840 0.960 0.947 0.750 
f 0.674 0.901 0.833 0.625 
V 0.743 0.940 0.826 0.792 
W 0.930 0.984 1.000 0.291 

Bold values represent the best for each season. Bold and underlined 
values represent the best overall.  

1) HOW EARLY CAN WE PREDICT? 
All prediction results reported in the previous subsections are 
obtained with a leadtime (hours ahead of the event) of 1 hour, 
where we considered 5 hours before the event to detect an  
event in the next hour. Fig. 4 shows the area under the AU-
ROC for different leadtimes using nMIL on G1 for the Fall 
model. As expected, the closer we get to the actual event, the 
accuracy of event detection gets higher. We can see that even 
at 3-4 hours ahead, we can still obtain useful predictions out 
of the developed model. This is potentially deployable since 
early detection of events can be useful for grid operators if the 
lead-time is sufficient to allow taking early proactive actions 
before events cause wide disruptions to the grid. 
2) HOW MUCH DATA IS NEEDED? 
In the experimental setup reported in the previous section, we 
have considered 𝑘 to be 5 hours. In this section, we discuss the 
effects on the event performance if different 𝑘 were used. Fig. 
5 shows the performance of nMIL on G1 for the Fall model 
using multiple 𝑘	values. Fig. 5 shows that increasing 𝑘 from 1 
to 5 hours contributes to a much more stable prediction. As we 
further increased 𝑘, AU-ROC increased. This can be 
explained since larger 𝑘 allows the model to capture temporal 
differences and trends. We can see that there is not much 
difference between 1 and 2 hours, but performance improves 
as we increase 𝑘. The benefit of longer prediction horizons 
(larger 𝑘) is that it allows for earlier event detection. This 

enables power system operators to prepare earlier for high-risk 
events.  

 

 
FIGURE 3. The Receiver Operator Curves for nMIL  

 
FIGURE 4. The Area Under the Receiver Operator Curve for multiple 
leadtimes.  

 

FIGURE 5. The Area Under the Receiver Operator Curve for multiple 𝒌 

3) PRECURSOR DISCOVERY 
The precursor discovery uses a threshold 𝜂 to determine the 
significance of an individual instance 𝑥#" towards the 
predicted label 𝕐H!. For precursor discovery, we use the 
probabilities produced by nMIL only. This choice is based 
on the way the nMIL cost function is constructed. In GICF, 
there are no temporal (hourly) groupings, and the temporal 
aspect is disregarded. When discussing precursors, we are 
interested in identifying the precursors in a temporal setting.  
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To demonstrate how precursors are used for a specific event, 
Fig 6. shows the probabilities obtained for a correctly detected 
event using nMIL from the feature group G1 for the Fall 
model. In Fig. 6, weather parameters are shown in green and 
PMU data are shown in red.  Each group of bars represents an 
hour. We selected 𝜂 = 0.7 (which is represented as the red 
dashed line). As the event is predicted using the model, in Fig. 
6, we can see that as we approach the event time (𝑡), wind gust 
and precipitation start contributing to the detection. Since 
voltage probabilities increased significantly two hours before 
the event, we can indicate that PMU voltage was an indicator 
ahead of time. This progression of probabilities can be used by 
power system operators as an early warning of the event. In 
this way we are not just predicting events, but also providing 
an explainable prediction, which can be used to plan outage 
mitigation ahead of time.   
The provided methodology introduces direct and explainable 
links between the prediction and the used data. In comparison,  
using the raw data or the learned representations can be 
challenging. The representation learning described in section 

III.C mapped complex and high-dimensional data to a latent 
space. As discussed, Fig. 6 shows how the final probabilities 
of the model can be interpreted. In Fig. 7, we show what the 
embedded data for the same event looks like. Fig. 7 shows the 
data used as input to the model. If we compare the two figures, 
we can see the changes in data (color changes as the time 
approaches 𝑡) that correlates with the probabilities. A one-to-
one mapping between probabilities and embedded data does 
not necessarily exist due to the complexity of the detection 
model. However, a user trying to interpret the predicated event 
can examine the probabilities and the embedded data 
simultaneously and gain a better understanding of the model's 
behavior. 
 
V. CONCLUSION 
In this study, we:  

• presented a methodology to use sparse multi-modal 
data for event prediction and precursor discovery 
designed to aid power system operators in efficiently 
using large amounts of multi-modal data.  

FIGURE 6. Probabilities of detection for an actual event using nMIL with G1 (weather parameters are shown in green and PMU data are 
shown in red). The figure shows how precursors importance’s are increasing when the time approaches the event. 

FIGURE 7. Embedded G1 data for the event predicted and shown in Fig. 7. We can see that the embedding absolute value change as time 
moves towards the event time (t). Visually predicting events from embedded data is not a trivial task. 
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• show how to use streamed and sparse PMU data and 
external data sources to predict power system events 
without relying on triggered data or tracking 
thousands of granular nodes in the power system.  

• introduce a paradigm to use high-dimensional multi-
modal data, where data is aggregated, and 
automatically preprocessed, a new latent space is 
learned, and data is mapped to it. 

• introduce two settings of building and training 
detection models, where one uses a full year and the 
other uses seasons for training and testing. 

• demonstrate how precursor discovery can be 
achieved at the same time as event detection, the 
models are able to predict events accurately with the 
best AU-ROC of 0.94 in a 1-year out of sample data.  

• detect events ahead of time with acceptable 
performance, which can provide the power system 
operators with interpretable outputs in the form of 
probabilities for the precursors and trackable latent 
space data. 

 
VI. FUTURE WORK 
One of the main limiting factors of this study is the lack of 
power system topology, PMU locations, and any other 
information about the power system status. We believe that by 
utilizing more information such as locations of PMUs, and 
prediction accuracy, and the richness of precursors and 
provide localized info about the predicted failures. We also 
suggest a study of longer time horizons before the events, 
which requires models that can distinguish between short- and 
long-term spatiotemporal relations to the event. 

APPENDIX I: U.S. CLIMATOLOGICAL REGIONS 
AGGREGATION 
As discussed in section III.B.3, the weather data is aggregated 
for the Western Interconnection region, where many 
Automated Surface Observing Systems (ASOS) weather 
stations exist. Using information obtained at all weather 
stations can introduce data redundancy in sparse settings, 
especially if the weather stations are measuring areas of 
similar climates. To mitigate this, weather stations are 
aggregated based on their locations in climatological 
divisions. This aggregation aims to capture the weather in a 
smaller spatial region without mixing areas of different 
climates. To achieve this, we relied on the climatological 
division discussed earlier. The aggregation process is 
performed as follows: 
1) WEATHER STATION SELECTION  
To select the weather stations of interest, we overlaid the 
Western Interconnection region maps with the locations of 
each weather station. This is possible since weather stations’ 
have their latitude-longitude known. Stations that don’t rely 
on the Western Interconnection service area were excluded 
using the overlaid maps. The same methodology was used to 
select weather divisions of interest. 

2) AGGREGATING WEATHER DATA BY CLIMATE 
DIVISIONS 
One of the ways the National Oceanic and Atmospheric 
Administration (NOAA) reports the climate divisions is 
through a list of zip codes [15]. In this list, each climate 
division has the list of county Federal Information Processing 
Standard Publication (FIPS) codes associated with it. Using 
this dataset, we mapped each location (latitude-longitude) of 
the weather station to FIPS codes using the U.S. government 
Census Geocoding Services [19]. Then the intersection of 
weather divisions and weather stations is determined through 
common FIPS codes. The last step is to aggregate weather 
measurements from different stations. This is achieved by 
averaging all-weather measurements except for precipitation, 
which was summed. This approach followed standard 
practices for NOAA datasets. 

APPENDIX II: LTTB downsampling examples  
As discussed in section III.C.1, PMU data is downsampled to 
reduce data noise and processing times. Largest Triangle 
Three Buckets (LTTB) method is used to downsample PMU 
data. This appendix shows an example of original data 
compared to downsampled data. Graph A in Fig. 8 shows the 
original data. Original data is two hours long for one signal for 
one PMU, which at 30Hz will have 216,000 data points (30Hz 
× 3600seconds/hour × 2 hours = 216,000). Graphs B and C 
in Fig. 8 show the 60 samples/min and 1 sample/min, 
respectively. Graphs B and C still have a strong resemblance 
to the original data, but Fig. 8 graph C has 0.3% of the original 
size (720 data points), and Fig. 8 graph B has 3.3% of the 
original size (7200 data points). LTTB captured all data’s main 
characteristics and values changes but with a fraction of size.  
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or assumes any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its 
use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United 
States Government or any agency thereof. The views and 
opinions of the authors expressed herein do not necessarily 
state or reflect those of the United States Government or any 
agency thereof. 
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FIGURE 8. Examples of downsampling using LTTB. Graph A is original data. Graphs B and C are 60samples/min and 1sample/min 
respectively. We can see that graph C shows all the main characteristics using a fraction of original data size. All graphs’ y-axises 
have similar data ranges, actual y-axis values are not shown for data privacy reasons. 
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