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SUMMARY 
 
Synchrophasor technology has been used for monitoring, control, and protection of bulk power system 
for over 10 years. Deployment of phasor measurement units (PMUs) in the USA power system has 
surpassed 3000 units installed in the transmission substations as stand-alone intelligent electronic 
devices (IEDs) or as a software add-on to other devices such as digital protective relays (DPRs) or 
digital fault recorders (DFRs). By now, thousands of terabytes of PMU data may have been captured 
and stored by various transmission system operators (TSOs) and independent system operators (ISOs). 
This creates an opportunity to deploy advanced machine learning (ML) techniques to detect and 
classify faults recorded by PMUs automatically to be used by the system operators for rapid, critical 
decision-making when manual analysis of the past or unfolding events is not feasible.  
 
In this paper we offer a brief background on how the automated fault analysis may be done using DPR 
and/or DFR data, and compare some of the legacy approaches to the new ML approaches in the 
context of the system-wide PMU recordings. We then offer insights from developing practical ML 
solutions that have been applied on field recordings captured by close to 450 PMUs from all three US 
interconnections (Western, Eastern and ERCOT) over two years (2016-2017). We identify and 
illustrate ML challenges we addressed: inaccurate data, data with scarce and temporally imprecise 
fault labels, data recorded by PMUs sparsely located at substations resulting in the fault records taken 
afar from the ends of the faulted lines, data containing only positive sequence values, and data taken at 
different voltage levels. We then illustrate the ML model results for fault analysis under different 
application scenarios. 
 
The novelty of this study is not only in the design, implementation, and performance analysis of the 
ML algorithms, but also in the use of advanced fault modelling and simulation approaches to improve 
the training results when developing supervised ML models for fault detection and classification. 
Extensive simulations of faults were conducted on a 14-bus power system to create a training dataset 
with over 1400 accurately labelled faults.  This dataset was applied to enhance the accuracy of fault 
detection and classification of machine learning-based models trained with small number of labelled 
faults in large datasets recorded in the grid interconnections ranging from 5,000 to 70,000 buses.    
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1. BACKGROUND 
 
As it is well known, power systems experience faults due to weather, deterioration of equipment, 
animal intrusion and many other related causes [1]. Such faults typically result in a rapid change in the 
current and quite often in a voltage collapse or swell accompanied by a possible appearance of a DC 
offset and frequency changes. While the initial faults last for a relatively short time of one to several 
alternating current cycles (a cycle is 16.67ms in a 60Hz system), the fault clearing event can last much 
longer if autoreclosing sequences are involved. A single protective relay operation may also change 
the power system topology and operating condition to a point where some other relays in the vicinity 
operate unintentionally causing cascading events. As a consequence, the stability limits may be 
reached, which may result in a system collapse. Hence, the analysis of faults requires details about the 
local events as well as system-wide impacts. This leads to the analysis requirements that focus on 
safety and reliability, range across variety of spatiotemporal scales, and aim at different end-users.  
 
Dependability vs Security of Relay Operation 
 
The concept of dependability and security of protection relay operation is defined to differentiate 
between fast fault clearing requirements in the case the fault occurs (dependability) and restrained 
operation in the case the event is not a fault (security) [2].  The relay operation performance under 
such guidelines comes from the requirement to maintain operational safety (fast fault clearing) and 
system reliability (avoidance of relay overtripping).  In order to understand what is happening during 
the faults, different fault analysis spatiotemporal granularity needs to be applied ranging from insights 
into the local events to the characterization of the system-wide consequences.    
 
Spatiotemporal Scales of Fault Analysis 
 
Initial fault events may last as short as a fraction of the voltage or current cycle before the protective 
relays detect the fault and issues a trip signal to operate a circuit breaker or set of breakers to isolate 
the fault. The modern digital relays can operate as fast as one cycle and advanced circuit breakers can 
trip as fast as 1-2 cycles bringing the initial fault clearing sequence to a few cycles [3]. After the 
attempt to clear the faults is made, the automated reclosing sequences lasting several hundreds of 
milliseconds may be deployed to try to restore the system in the case the faults are of a temporary 
nature. Should the fault persist, the faulted element is removed and system operation is restored with 
new system conditions that may affect the voltage, frequency and power flow. All of this is noticeable 
during and after fault clearing sequence which may last up to several seconds. If a single fault is not 
causing cascades, the system should be capable of recovering under such N-1 events. However, in 
perhaps rare circumstances, the new system conditions may cause m failures of other equipment such 
as circuit breakers, or initiate mis-operation of other relays, which may result in N-m system-wide 
disturbance that can last for minutes and sometimes longer, and eventually may cause even a system 
collapse [4].  As observed, the time scale of the fault analysis may range from milliseconds to minutes 
or even hours, and the spatial scale may include the local relays involved in the fault clearing, or much 
wider area that may include other affected relays or manifest in a system-wide disturbance.        
 
Users of Automated Fault Analysis 
 
Typically, the users of the automated faults analysis are the protection engineers and operators, former 
with a goal of understanding the reasons for particular relay operation and related consequences so 
that future protection system performance can be improved, and later with a goal of assessing the 
system conditions to determine whether any manual operator action may be used to remedy or prevent 
the consequences of faults on system reliability and safety. Since the data collected during faults may 
be overwhelming, the automation of the fault analysis is highly desirable even if no immediate action 
is taken, and is absolutely necessary if any real-time action is warranted [5].   
 
The next section discussed the analysis solutions that meet different aspect of the of the protective 
relaying performance assessment, the spatiotemporal scales, and the need for timely results.  
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2. LEGACY FAULT DETECTION AND CLASSIFICATION APPROACHES 
 
Typically, utilities use three types of systems to perform fault analysis as shown in Figure 1. They are 
differentiated by the equipment involved in the recording of data during faults. Such solutions are 
distinctively different when it comes to the level of details the analysis can offer, the spatiotemporal 
scales it can cover, and the ability to offer a remedial action, all tied to the inherent design constraints 
of each system. Next, we cover basic characterises of such systems and their performance limits and 
benefits. We use the example from Figure 1 to illustrate the options when the voltage is monitored. 
  

 
Figure 1Various substation recording systems for voltage monitoring 

 
Fault Analysis Using Data Captured by Digital Fault Recorders and Protective Relays 
 
Most of the time fault analysis is performed using recording from Digital Protective Relays (DPRs) 
and Digital Fault Recorders (DFRs) shown at the bottom of Figure 1. Since such an analysis requires 
determination of phase relationship between three-phase voltages and currents, the sampling on the 
related recording channels has to be synchronized to the same sampling clock. This is performed at a 
relatively high sampling rate in the order of 1kHz for DPRs and 5kHz for DFRs. To facilitate an 
understanding of pre-fault events, a short time window of the pre-fault waveforms is captured. 
Typically, the sampled values are sent to the centralized place, most often the Protection Engineer’s 
office for off-line analysis. In recent years, automated systems for fault data analysis have been 
developed and allow such non-operational data to be turned into the operational data that may be used 
by the operators for mitigating fault impacts within seconds to minutes of the fault occurrence [5].  
 
Several advantages and disadvantages of such analysis systems have been well understood over time. 
The key advantage is that such systems are capable of tracking transients caused by the faults in all 
three phases rather accurately, which leads to thorough understanding of the correlation between 
different faulted phase of voltages and currents. The disadvantage of the DPRs is that they can only 
capture synchronized recording on the transmission line where they are located, and the files from 
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multiple relays cannot be easily merged for a system-wide analysis unless their sampling clock is 
controlled by an accurate timing signal received from the Global Position System (GPS) of satellites, 
which requires each substation to be equipped with a GPS receiver.  The DFRs typically have higher 
sampling rates than DPRs and can represent transients even better, and their sampling clock is 
synchronized for all the recording channels across the entire substation. However, merging the files 
from multiple substations with no synchronized clocks requires elaborate time-alignment techniques 
or the use of a clock from the GPS receiver. Last but not least, both types of IEDs are triggered 
instruments, which means that they can only capture waveform samples once an event is detected, so 
slowly evolving events such as gradual frequency change or voltage sags or swells may not be 
captured. The reason for their limited recording capability is the design constraint of relatively small 
local memory for storing the high sampling-rate data.   
 
Fault Analysis Using SCADA Systems 
 
The Supervisory Control and Data Acquisition (SCADA) systems have been developed to collect data 
from substations using Remote Terminal Units (RTUs) as shown at the top of Figure 1. The data is 
scanned typically every few seconds, and the sampling of the waveforms by RTUs is not time-
synchronized. Hence, the analogue waveforms cannot be used for analysis of fault types because of 
the low time-fidelity and because the angle between the faulted phases cannot be determined [6].   
 
The key advantage of the SCADA systems is in their ability to collect statuses of circuit breakers, 
which helps in determining which element of the power system was disconnected due to a fault. 
However, the RTUs/SCADA may not time-stamp accurately the fast subsequent circuit breaker 
operations such as the ones involved in the autoreclosing sequences, which may limit the ability of the 
operators to analyse faults based on the SCADA RTU recordings unless an advanced SCADA with 
Sequence of Events (SoE) feature is deployed. Also, due to a large number of RTU measurements 
captured across all the substations, the SCADA systems tend to be designed to only record the 
channels that experience a large deviation form a pre-set threshold in each scan, so not all the 
measurements are reported continuously. Since SCADA collects thousands of measurement points, 
and brings them to the centralized location where the SCADA database resides, measurement errors 
due to missing or altered data are a common problem. To make such measurement useful for the 
Energy Management Systems (EMS) applications, a state estimation approach is commonly used for 
the topology and measurement error detection and mitigation [7]. 
 
Fault Analysis Using Synchrophasor Systems     
 
To alleviate shortcoming of the SCADA systems, the synchrophasor systems (shown in the middle of 
Figure 1) were developed in the USA over 30 years ago, but applied widely only since 2009 when the 
American Recovery and Reinvestment Act (ARRA) subsidized utilities to deploy PMUs at large scale 
[8]. Today, synchrophasor systems are widely used to supplement SCADA system by reporting 
measurements at a high resolution of 30 or 60 frames per second (FPS), which are time-synchronized 
to a common clock such as UTC (coordinated universal time) derived from the GPS timing source 
through GPS receivers placed in the substations.   
 
The obvious advantage of the synchrophasor systems is in their ability to provide high-resolution time-
synchronized measurements, but at the same time there are multiple disadvantages when it comes to 
the fault analysis using PMU recordings. First, such systems calculate an estimate of a phasor, which 
is not a very detailed representation of a transient waveform needed to fully analyse faults. Second, the 
FPS reporting, while relatively high in comparison to SCADA, it is still not sufficient to capture fast 
fault transients that may die out in less than 100 milliseconds. Last, due to a relatively high cost of 
adding PMUs and GPS receivers and communication facilities to transfer streaming PMU data, the 
PMUs are still sparsely located in limited number of substations not capturing accurately faulted 
waveforms in the case the event occurs further away from the substations where PMUs are located. 
Their key advantage still remains the ability to capture evolving events continuously over a wide area, 
also being a critical information in understanding the fault impacts.  
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3. SYNCHROPHASOR-BASED APPROACH AND ASSOCIATED DATA ISSUES 
 
In the USA, over 3000 PMUs are installed in the three Interconnections, with over 500 buses in 
ERCOT, over 20,000 buses in the Western interconnection, and over 75,000 buses in the Eastern 
Interconnection [8]. It is rather obvious that the sparsity of the PMUs with the respect to the number of 
substations where PMUs may be installed is significant. Besides, the experiences from the analysis of 
two-years’ worth of recordings from 450 PMUs placed in the three interconnections reveal substantial 
data quality issues [9]. Last but not least, the natural occurrence of faults results in an uneven 
distribution of the fault recordings related to different faulty types [10]. All three issues may 
dramatically affect the ability to build and train ML models to detect and classify faults based on 
synchrophasor measurements alone. We discuss what we learned about those issues through the 
analysis of actual field recordings. 
 
Data Recording Limitations for Fault Analysis Caused by PMU Locational Sparsity 
 
The existing PMUs sparsely located across the power systems are often placed near particular power 
system equipment for certain purposes, such as at large generation stations for generator dynamic 
performance monitoring and model validation/calibration or at critical substations for situational 
awareness about the impact of fault clearing topology switching. As a result, sparsely placed PMUs 
are often far from the locations of various types of faults which makes the recorded data less useful for 
fault analysis because the voltage drop and current jump due to a fault are the highest at the fault 
location and they will diminish at the PMUs located further away. In addition, as more PMUs are 
currently placed at the substations with high voltage levels such as 500kV and 230kV than with lower 
voltage levels of 130 kV and 69kV, recorded PMU data in voltage levels different from the voltage 
level of the fault location may not be able to “see” fault correctly if transformers between different 
voltage levels are wye-delta connected. This may only be an issue for the current situation. As the 
number of PMUs increases, this will become less of an issue in the future. 
 
PMUs, with a typical 30 or 60 frame per second (FPS) data reporting rate for a 60 Hz system, generate 
orders of magnitude higher volume of data comparing to SCADA’s RTU data scan rate of once 
several seconds. To reduce the demand for communication network bandwidth and data storage space, 
often only positive sequence voltage and current phasors from PMUs are transmitted and archived 
despite the fact that all PMUs are capable of generating and sending the three-phase phasors, which 
are extremely useful for fault analysis. A non-three-phase type of fault may look less severe in positive 
sequence than in three-phase phasors (e.g. one phase voltage drops from nominal value down to close 
zero due to a single-phase-to-ground fault may only show as a 33% voltage drop in the positive 
sequence voltage phasor). In the dataset we examined, majority of Western interconnection PMUs 
provide three phase phasors, while less so in the other two interconnections. 
 
Bad Data Impact on Fault Analysis 
 
Two key data quality issues, i.e. missing data and unreasonable data, identified through our analysis 
have direct impact on fault analysis. Based on the dataset we examined, the results of the analysis are 
shown in Figure 2 and Figure 3. As it may be observed from Figure 2, several PMUs are missing 
upwards of 60% of key measurement data while the best PMUs only missing ~2% of the data. From 
Figure 2, it appears that the PMU scaling was off in many instances, which also affects the fault 
analysis due to misinterpretation of the scale of voltage and current during faults. No meaningful fault 
analysis can be performed where a PMU is missing large blocks of data. This issue could not be 
remedied by performing some types of data pre-processing since that would have to be addressed in 
the field by identifying the root causes of the issue and taking actions to mitigate them appropriately.  
 
Different types of unreasonable data have been identified in the dataset. Some are outliers, such as 
phasor angle values have gone beyond the +/- 180 degree range, phasor magnitude has negative values 
that are supposed to be always positive, and extremely large values beyond the reasonable values (e.g., 
voltage magnitude value is several orders of magnitude higher than the nominal value). Others do not 
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appear to be actual measurement values, such as flat 60Hz as the measured frequency values while 
real power system frequency never stays at 60Hz but fluctuate around the 60Hz all the time during 
normal system operations. Those outliers, if not removed, would not affect the fault analysis. 
 

 
Modelling and Simulation to Alleviate Limitations Caused by an Uneven Recorded Fault Types 
 
Fault events are rare occurrences in power systems, which are typically caused by equipment failures, 
severe weather conditions, and sometimes human errors. Among eleven types of the faults (i.e. three 
types of single-phase-to-ground as A-G, B-G, and C-G, three types of phase-to-phase faults as AB, 
BC, and CA, three types of phase-to-phase-to ground as AB-G, BC-G, and CA-G, and the three-phase 
faults, ABC and ABC-G), the occurrence of the faults for each type is uneven in the recorded data. A 
majority of recorded faults are single-phase-to-ground faults, followed by faults involving any two 
phases, and very few are three-phase faults, which presented a real challenge to train ML models 
effectively, and to test the trained models properly.  
 

To alleviate the situation 
created by rare occurrence 
of the fault events and the 
uneven distribution of 
different types of faults 
recorded in the field, we 
have built a synthetic 14-
bus power system model 
(Figure 4) on a real-time 
digital simulator and 
connected to 4 actual and 
8 emulated PMUs to 
generate a simulated line 
fault event dataset with 
135 fault events for each 
of the ten types of the 
faults. Each of the 
simulated fault events 
included a typical fault 

inception, clearing and reclosing sequences. Following the fast fault clearing, automatic line reclosing 
is simulated for all single-phase-to-ground faults, and manual line closing by human operators was 
simulated for all multi-phase faults. The simulated dataset has a separate event log file in which 
detailed information for each simulated fault event (i.e., time, location, fault resistance, and fault type) 
is provided. The dataset has been used to train different types of ML models with good results. 
 

Figure 2 Missing data Figure 3 Unreasonable data 

Figure 4 PMU Placement in the synthetic IEEE 14-bus power system 
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4. CHALLENGES IN IMPLEMENTING MACHINE LEARNING APPROACHES 
 
As mentioned earlier, there are many approaches to implementing automated fault detection and 
classification, and such approaches have been used for the analysis of power system events in the past 
[5]. ML methods aim to develop a model that discovers patterns in observed temporal data to 
automatically identify and categorize faults. The ML process consists of (1) choosing an appropriate 
knowledge representation; (2) selecting an objective or loss function for evaluation of possible 
models; and (3) using an optimization method to minimize the error on training data by adjusting the 
parameters of the model.  
 
To capture temporal dynamics for fault detection and classification, ML approaches typically 
represent data as feature vectors over a sliding time-window, where features could be carefully 
engineered or extracted more automatically from raw signal. Commonly used objective functions for 
ML-based detection and classification include maximum likelihood for estimating the parameters of 
the true probability distribution based on observed training data, and cross entropy that measures how 
closely the true probability distribution is represented by an approximation obtained by the model with 
specific parameters. Typically, continuous function optimization algorithms are used to find the model 
parameters that result in minimal loss. They are based on using derivative information, but there are 
also alternatives used for non-differential objective functions. 
 
Common ML modelling assumptions are that (a) training and test instances are drawn independently 
from the same unknown distribution; (b) function mapping explanatory variables (inputs/features) to 
response variables (outputs) is smooth almost everywhere; (c) signal to noise ratio is large; (d) ignored 
information has negligible effects; and (e) labels are precise and the set of labelled events is 
sufficiently large. When it comes to faults detection and classification, some of these assumptions are 
often violated resulting in various challenges. In particular, we are facing several challenges associated 
with labelling of faulted events, selecting appropriate data and time-windows for the analysis, and 
selecting the most suitable ML models. Our choices and implementation constraints discussed next are 
based on the specific PMU data sets that were available for the implementation of the automated ML 
solution.  
 
Pre-processing Imprecise and Inaccurate Data Labels  
 
The fault dataset labels are often scarce, inaccurate, or imprecise. Faults that occur far from PMUs 
might not be assigned labels while labels entered manually are subject to human error, and those 
obtained from SCADA are imprecise due to lower accuracy of the time-tag information. 
 
To reduce some of these limitations, additional cleansing of faults labels could include rapid, partial, 
and full visual inspection. Towards this objective we analyzed ML benefits of using (a) handpicked 
normal operation data; (b) narrower time intervals; (c) reduced time intervals to capture single events; 
(d) precise centering of events in time-window intervals; and (e) visual inspection of reported events.  
Our results provide evidence that ML-based faults detection is more accurate when using more 
preprocessed data. However, data preprocessing requires domain expert’s time, which in practice is 
often extremely limited. Therefore, we analyzed ML cost-benefits of label preprocessing aimed to 
reduce imprecise and inaccurate annotations. Our extensive experiments conducted on data from the 
U.S. Western interconnection include recording from 38 PMUs over two years.  The most cost-
accuracy benefits were obtained when integrating a small fraction of expert-inspected data labels with 
additional labels that were not manually inspected by a domain expert [11]. When learning fault 
detection using 12-month data, major accuracy improvements were obtained by full inspection of 2-
month data combined with remaining automatically preprocessed data (F1 score 0.86 vs 0.82).  
 
Selecting Knowledge Representation for PMU Time-Windows 
 
Raw PMU recordings require significant transformation to make them suitable for ML training. In our 
study, PMU signal is down sampled to 30FPS as some PMUs raw recordings are at 60FPS while 
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others are at 30FPS. Then, each minute of a single PMU recording we represent as a sequence of 180 
non-overlapping windows covering 10-frames. Such sequences are concatenated to a high-
dimensional tensor over all PMUs. When integrating data from 38 PMUs, N-minute of signal we 
represent as N x 38 x 180 x 10 tensor. We reduce data size by focusing time-window around reported 
faults as these are considered the most informative for ML training, while the remaining parts of the 
data are discarded. This representation requires additional transformations to address large data 
dimensionality, causing a curse-of dimensionality challenge for ML training and inference. In 
addition, the fault’s signature characteristics are not necessarily evident on all PMUs due to their 
geographical and topological distance of PMUs to the event site.  
 
We addressed both challenges by transforming high-dimensional PMU recordings data tensors to a 
simplified representation that maintains the essential temporal information, but automatically reduces 
the data size and noise [12]. This is achieved by adopting Soft Dynamic Time Warping technique to 
summarize all time windows observed during a single 1-minute interval at all PMUs. The summary 
time series is a low-dimensional representation of the corresponding group of time series, and it 
preserves the distortions and sudden jumps, which are essential properties for ML-based fault 
detection. We found significant benefits of using information observed by several PMUs (e.g. average 
AUC 0.81 based on 3 PMUs vs 0.77 when relaying on a single PMU) but the variation of performance 
measured as the standard deviation of AUC decreases as the number of PMUs increases.  
 

5. ML SOLUTION FOR AUTOMATED FAULT DETECTION AND CLASSIFICATION 
 
In this section we discuss our ML automated solutions for fault detection and classification based on 
the PMU recordings pre-processing and knowledge representation we discussed earlier. We focus on 
the most important methodological steps that we have pursued as we defined, implemented, and tested 
the solution.  
 
ML Models for Fault Detection 
 
Traditional 2-class ML approaches can be leveraged for fault detection by learning from positive 
sequence voltage and current phasors recordings captured by multiple PMUs. Using PMU data pre-
processing discussed in the previous section we developed fault detection methods that employ 
Decision Tree (DT), Multiple Logistic Regression (MLR), Multilayer Neural Networks (MNN), and 
Multi-Class Support Vector Machine (mcSVM)[11]. We also developed Convolutional Neural 
Network (CNN) based models where automated de-nosing techniques and knowledge representation 
discussed in the previous section are applied to the measurements and then parallel and concatenation-
based convolutional neural networks that include multiple layers performing convolution operations 
are utilized for fault detection [11].  
 
Our experiments using 2-years PMU recordings at the U.S. Western interconnection provide evidence 
that CNN-based ML fault detection was more accurate that traditional models. We found that for fault 
detection voltage was more relevant than current and frequency. However, multi-channel CNN that 
learn from joint voltage, current and frequency information observed at multiple PMUs were more 
accurate than alternative ML models [11]. In particular, in our experiments such a model achieved 
AUPRC of 0.9 and F1 score 0.86, outperforming four traditional machine learning models (DT, MLR, 
MNN and mcSVM) that achieved AUPRC of 0.62 to 0.82 and F1 score 0.72 to 0.77.  
 
ML for Faults Classification 
 
Once a transmission line fault is detected, another ML method could be applied to classify the fault 
type to one of 11 categories defined in one of previous sections, which can be generalized as P-G, PP, 
PP-G, 3P, and 3P-G. A challenge for ML-based fault classification from PMU data is that field 
recorded data might not be able to distinguish PP from PP-G faults or 3P from 3P-G faults when all 
PMUs are distant from the fault location. This challenge we addressed by merging AB with AB-G, BC 
with BC-G, CA with CA-G and ABC with ABC-G fault types. Consequently, the fault classification 
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problem is reduced from 11 to 7 categories that are easier to separate automatically from three-phase 
PMU data.  
 
Another challenge for ML-based fault classification is that certain types of line faults are less frequent, 
causing severe training data imbalance. This is a major problem for many ML algorithms that assume 
a similar number of cases for each class. ML models trained on such data could have poor sensitivity 
for infrequence classes. A straightforward solution of subsampling larges classes of faults to obtain a 
balanced training dataset is inappropriate since even more common fault types are quite infrequent as 
compared to normal operation, and therefore a very long observation time would be required to collect 
a sufficiently large training data for accurate ML.   
 
To address class imbalance and class size problems, we questioned if these data limitations could be 
reduced by learning from integrated three-phase filed-recorded measurements and line fault 
simulations [10]. The aim of simulations conducted in our study was to combat class imbalance and to 
enlarge the size of training dataset needed for more accurate ML. The result of such training data 
enhancement obtained in our study is shown at Figure 5. Blue bars show the number of recorded line 
faults for each of 7 categories in year 2016 at the U.S. Western interconnection while red bars show 
the number of faults simulated at a14-bus power system model described at Figure 4. Integrated 
training data is balanced and is five times larger than field-recordings alone. Enhancement is 
particularly large for three line and three lines to ground faults where a single fault is extended to 86 
cases. 

 
 
Figure 5 121 field recorded faults (blue) are extended by 481  
simulated faults (red) resulting in 86 cases for each of 7 classes 
 
ML using integrated field-recorded data that include information from 38 PMUs and simulated data 
from 12 PMUs (4 actual and 8 emulated) required for unifying extracted features to the same 
dimensionality. In our experiments a unified knowledge representation is achieved by measuring the 
range of voltage of each PMU individually over a data window and computing an aggregated sum 
normalized by the number of PMUs in each system. Such aggregated range information is computed 
between each two phases for a data window and finally the ratio between the differences in the voltage 
range is determined.  
 
In our experiments shown at Table 1 fault classification obtained by SVM, Random Forest (RF) and 
Extreme Gradient Boosting (XGBoost) models on unseen year 2017 field-recorded PMU data was 
significantly improved by learning from integrated field-recorded and simulated data [10]. In 
particular, precision and recall of SVM were 83% and 91% respectively when learning from field-
recorded data and both scores improved to 99% when learning from integrated data. F1-score also 
improved from 87% to 99%, providing additional evidence that it is beneficial to train ML models 
using integrated field-recorded PMU data and simulations vs. relying on filed-recorded data alone 
when certain types of events are insufficiently represented in field-recorded data in the training period. 
 

6. CONCLUSION 
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Table 1. Fault classification performance 
across multiple evaluation metrics 
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The performed analysis and results lead to the following conclusions: 

 ML is an effective approach to detecting and classifying faults if using three-phase recordings 
of voltage and current, but using only positive sequence voltage makes it challenging. 

 Data cleansing and curation to get rid of the bad data and label ambiguities is time well spent 
since such an additional effort can lead to much better ML algorithm performance. 

 If the recordings contain an uneven representation of various fault types, the simulations using 
a synthetic power system model can generate new fault waveforms to balance the training set. 

 Wide-area synchrophasor recordings offers an advantage of capturing a slow change of system 
voltage, current and frequency that cannot be captured by recording of local IEDs. 

 To make a business case for the use of automated ML algorithms for fault analysis, one has to 
perform an evaluation how much to invest in PMUs to obtain the full system-wide coverage.       
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