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ABSTRACT Electric grids are vulnerable to the impacts of extreme weather. Utility companies face the 

necessity to reduce the number of power outages caused by weather. This paper expands the approach of 

predicting weather outages in the distribution grid by incorporating wind modeling. The models for the grid 

outage State of Risk (SoR) prediction are used by utilities to mitigate potential impacts and reduce outage 

durations. We study the performance of such models when they are enhanced by incorporating data from 

Wide Area Fine Grid Wind Modeling (WAFGWM). For a given period, WAFGWM produces wind fields 

that characterize the direction and speed of the wind over the area of interest. The process of extracting 

features for the Machine Learning (ML) algorithm is described. The new solution is tested utilizing actual 

grid performance data from a utility company. The results from nested cross-validation obtained on three 

years of data reveal that the proposed method improves model performance. 

INDEX TERMS Machine learning, state of risk, outage prediction, wind modeling 

I. INTRODUCTION 

Network outages have been reported to cause significant 

equipment damage and socio-economic losses [1]. 

Addressing the problem of reducing the number and duration 

of outages remains among the top priorities of utility 

companies. Strong winds may cause short circuits in 

distribution systems by tree branches being blown into 

feeders [2]. At the same time, technology advances raise 

consumer needs and expectations of reliable electrical supply 

[3]. Given the importance of enhancing grid resilience, the 

industry focus has shifted to predicting outage occurrences 

through enabling a priori mitigation measures for avoiding 

or reducing the impacts [4, 5]. This paper incorporates wind 

modeling into the process of assessing the State of Risk 

(SoR) of outages caused by impacts of weather and other 

environmental conditions.  

Traditionally, utilities deal with outage impacts a 

posteriori, i.e., restoration actions are taken as a reactive 

measure after an outage occurs [6]. The proactive approach 

where the risk of an outage is predicted in advance has been 

made possible with the advancements in Geographic 

Information Systems (GIS) and Machine Learning (ML) 

algorithms, complemented by Big Data technologies [7-11]. 

Using a proactive approach, the utilities can reduce the risk 

with preventive actions such as tree trimming, work crew 

positioning, customer notifications, and back-up generator 

utilization. Such mitigation measures are increasing 

resilience, optimizing capital and operational expenditures 

while limiting socio-economic impact and increasing the 

overall satisfaction of utility customers.  

Recent research [12-14] describes approaches to estimate 

the number of outages occurring due to thunderstorms using 

an optimized linear combination of ML models that include 

Random Forest (RF), Bayesian Additive Regression Tree, 

Ensemble regression, and Gradient Boosted Tree. Predicted 

SoR levels [15] are utilized for assessing the resilience of the 

distribution grid by adopting a regression model combined 

with the Naive Bayesian model [16]. The risk of distribution 

transformer failures due to weather is studied in [17]. 

Prediction of damages to the grid from extreme weather is 

discussed in [18]. These studies provide essential information 

on outage prediction in the grid, but they fall short of 

considering wind behavior comprehensively. Adding local 

topographic and vegetation effects to SoR models results in a 

more accurate wind representation.   
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We hypothesize that the addition of Wide Area Fine Grid 

Wind Modeling (WAFGWM) features to these methods can 

boost the performance of outage SoR prediction, allowing 

grid operators to make a more focused mitigation plan. Our 

novel refined wind modeling allows predicting possible wind 

impacts on the grid (e.g., broken wires, tree limbs contacting 

wires, and debris blown on feeders).  

Our contribution is in improving the SoR prediction model 

with new features extracted from the WAFGWM process, 

which allows the selection and implementation of mitigation 

actions to alleviate the detrimental impact of the forced 

outages on the customers and utilities. The proposed 

methodology is evaluated on historical data from a utility 

company. We illustrate the advantages and shortcomings of 

our enhanced model by comparing its performance to the 

metrics of the baseline model. 

Section II discusses the problem background. Section III 

describes the process to enhance the SoR prediction accuracy 

using WAFGWM. The software tools for wind modeling are 

discussed in Section IV. Sections V and VI deal with data 

preparation and feature extraction. Prediction model training 

and testing are presented in Section VII, and conclusions are 

drawn in Section VIII. 

II. BACKGROUND 

Atmospheric wind analysis and forecast are extensively 

used in several applications, such as assessing air transport 

efficiency and safety [19], evaluating air pollution dispersion 

[20], and understanding the behavior of wildfires and their 

possible progression scenarios [21]. In the utility industry, 

3D wind forecasting is often used to estimate wind power 

plant efficiency and predict wind power production [22]. In 

our study, we use atmospheric wind analysis to enhance the 

performance of the SoR outage prediction model in power 

grids, which gives the probability of outage occurrence in a 

part of the network under given weather conditions.    

A forecasted wind field example is given in Fig. 1. The 

wind field is a set of points on a regularized grid that 

characterizes the horizontal wind vectors at a given height. 

Our study uses a height of 2 ft above treetops, near the 

typical distribution line height. There are many approaches to 

wind modeling. They range between two extremes: 

extrapolation and interpolation of available observations and 

comprehensive numerical solutions based on the Navier-

Stokes equations for fluid motion [23]. One type of model is 

a mass-consistent model, which is relatively fast and attempts 

to balance the simplicity of the interpolation approach and 

intricacy of the complete set of equations by meeting the 

requirement of conservation of mass [24]. Another class 

comprises linear models, which are designed to keep both: 

the conservation of mass and conservation of momentum 

[25], [26]. We are using the first type of model in our study. 

III. WAFGWM PROCESS 

We define WAFGWM as a process of calculating wind 

direction and speed at each small cell in the area of interest 

with consideration of elevation and underlying type of 

terrain. The process summarized in Fig. 2 consists of several 

steps. First, one needs to prepare the datasets necessary for 

modeling. The data are correlated in time and space, 

anomalous values are discarded, and the data are fed to the 

wind modeling software. In our case, we are using 

WindNinja [27]. It supports several types of wind modeling, 

each requiring different weather input data. In general, the 

inputs include Digital Elevation Model (DEM), surface 

roughness, and 10-m above-ground-level (AGL) wind 

observations from the Automated Surface Observing 

Systems (ASOS) [28], as detailed in the next section. The 

datasets need to be subsetted for the appropriate domain and 

fetched (downloaded) to a local machine (or cloud-based 

storage) for easier access. Big Data can become 

overwhelmingly space-consuming without proper subsetting, 

 
FIGURE. 1. Wind fields 

 
FIGURE 2. Process Outline Diagram 
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quickly growing over several terabytes [7].  

After the datasets are prepared, cleaned, transformed, and 

wrangled into a suitable format (detailed below), the software 

may start modeling wind fields over a specified area at 

specified points in time. That process may be executed 

manually or can be automated. When the number of modeled 

cases is low, manual operation through a Graphical User 

Interface (GUI) is acceptable. However, for the tasks of 

implementing and training ML models, a large number of 

cases are needed, so in our study this process is automated. 

The next steps are to analyze the resulting wind fields 

(ensure the quality of output, estimate the total computation 

time) and transform them into table-like datasets. That allows 

them to be joined with other features (dimensions) that are 

already present in the training dataset for the SoR prediction 

model. Since the outputs of WAFGWM are wind fields valid 

at several different times, spatiotemporal colocation is 

performed to match features to the events in the distribution 

grid. GIS ArcGIS Pro and its python library arcpy software 

are utilized in our case [29]. 

The final steps are to merge the new features with the 

training and test datasets, run model training and testing, and 

calculate performance metrics. Based on these metrics, one 

can assess the impact and importance of new features on the 

model performance.  

IV. WIND MODELING TOOL SELECTION AND USE 

A variety of software packages are available for modeling 

the wind at distribution line height on a grid from scattered 

10-m AGL observations. We have chosen WindNinja (WN), 

which is developed by the USDA Forest Service, Rocky 

Mountain Research Station [30], for use by wildfire 

management crews. WN accounts for our need to include the 

effect of terrain on the wind flow. Two solvers are available 

in WN for the calculation of wind fields: conservation of 

mass solver and conservation of mass and momentum solver. 

The second solver is generally more accurate, but the 

computational time required is significantly longer. It was 

shown that WN has difficulties modeling lee-side flow re-

circulation during externally forced high wind events [31], 

which is linked to the absence of a momentum equation in 

the first mode of modeling [30]. Additionally, point 

initialization is not available for the mass and momentum 

solver. In this study, we are using the first solver, mainly due 

to a large number of cases, since it takes less than one minute 

for the first solver to calculate one case compared to 

anywhere between 10-30 min for the second [32]. 

Required datasets include a DEM file for the modeled 

area, surface (10-m AGL) wind speed and direction, and 

specifications for the vegetation type in the area. Several 

output formats are supported in WN; here, shapefiles (*.shp) 

are used. 

Another indispensable feature of WN is the command line 

interface (CLI) that allows one to automate WN runs for 

several timestamps or different wind conditions. We are 

using WindNinja’s CLI through a python interface, which 

allows us to keep the entire process of wind modeling and 

subsequent ML model training and testing in the same 

environment.  

V. DATA PREPARATION 

This section discusses the data preparation for each of the 

input datasets: DEM, Vegetation Type, and Wind Fields. 

A. DIGITAL ELEVATION MODEL 

In our application, we decided to use the FARSITE 

comprehensive landscape file (*.lcp) format because it also 

contains information about vegetation in the area as one of 

the data layers. Such landscape files are primarily used to 

model fire behavior. These types of files include information 

on elevation, slope, aspect, fuel model, canopy cover, and 

optionally can have stand height, height to live crown base, 

crown bulk density, duff loading, and coarse woody profiles 

[33]. We are using LANDFIRE (LF) 2016 Remap [34] 

products, specifically LCP 40 Fire Behavior Fuel Models-

Scott/Burgan. The dataset reflects ground conditions for a 

time period close to 2016 for which we had records of 

outages. The spatial resolution of the acquired file is 30 by 30 

meters.  

Generally, the output cell size for the wind field is selected 

with consideration of the task at hand. For SoR predictions, 

we used 900 by 900 meters output resolution, which allowed 

us to balance the computational load and modeling accuracy. 

Smaller cell size substantially increases computation time, 

while bigger cell size yields coarser, less accurate results.  

Another way of decreasing computation time is dividing 

the area into several smaller parts and merging the resulting 

wind fields afterward. However, that approach may yield 

inconsistencies in wind field values along the edges of the 

modeled region parts. In this paper, the problem of SoR 

prediction is solved with reference to separate feeders in the 

grid, which are not uniform in length, location, or shape. 

Thus, it is natural to model the entire area in a single run.  

B. VEGETATION TYPE DATASET 

Vegetation type in the area of modeling determines the 

surface drag due to vegetation and whether the diurnal flow 

or non-neutral stability is considered during simulation. It is 

also used for heat flux parameters by WN. By default, three 

vegetation types are accessible to the users: grass, brush, and 

trees. One downside of the WN is that the standard way of 

specifying the vegetation type is by selecting the dominant 

vegetation type in the entire area, which leads to inaccurate 

modeling of wind fields when large areas containing 

disparate vegetation types are considered.  

To overcome that challenge, we used previously 

mentioned landscape files to specify the underlying terrain. 

When that approach is utilized, WN is forced to calculate 

surface drag based on the canopy and fuel information 

enclosed in the landscape file.  
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Other software for wind modeling may offer an easier way 

to define drag over the area. For example, Continuum [35] 

allows users to use well-known National Land Cover 

Database (NLCD) land cover GeoTiff files [36] as a source 

of information for the surface drag. 

C. WIND SPEED AND DIRECTION 

Initialization values for wind speed and direction in the 

area are used as reference points to “fit” the resulting wind 

field. WN supports three ways of initializing winds in the 

area: domain average wind, point initialization, and weather 

model. Point initialization allows one to define wind speeds 

and direction at several arbitrary points in the area. The 

software then calculates a balanced wind field that matches 

the point observations. The calculation process is iterative 

and is stopped when the simulated values are within 0.1 m/s 

of the measured values at every observation point. The 

method is very convenient since one can acquire wind 

parameters from stationary weather stations that report 

weather with high time resolution.  

We are using the point initialization method in our present 

study to be able to introduce forecast data in our SoR 

prediction model. The weather data for the area of interest 

has been obtained from the ASOS sites by using an API 

developed by Iowa Environmental Mesonet [37]. A pandas 

library is used to reformat the weather data for WN from the 

original ASOS report format. The set of files for one 

simulation consists of a .csv file for each weather station 

(WS) in the area, where each line represents one observation 

at the specified timestamp. Each .csv file needs to 

incorporate the following information: 

• Unique weather station name 

• Coordinate System 

• Datum 

• Latitude of WS 

• Longitude of WS 

• Height of measured wind above the surrounding 

vegetation 

• Speed of wind 

• Direction of wind 

• Radius of influence (limits the spatial extent to which 

each WS can affect calculations) 

• Units for each parameter 

• Timestamp 

• Optional parameters used for diurnal non-neutral 

stability sub-models are also included: 

• Temperature 

• Cloud Cover in Percent 

In addition to the individual .csv file for each location, the 

summary file, which contains the list of all individual WS 

files, is created.  

D. CLI CONFIGURATION FILE 

To make the SoR prediction process scalable to numerous 

modeling cases, we have automated WN simulation runs 

through the CLI. The configuration file needed to specify the 

options for the modeling needs several important parameters 

are: 

--num_threads: defines the number of virtual CPU cores 

used for simulation. 

--elevation_file: specifies the path to the DEM file 

--initialization_method: select from domain average wind, 

point initialization, and weather model. 

--wx_station_filename: path to the summary file with the 

list of WS files. 

--start_year, --start_month, --start_day, --start_hour, --

start_minute, --stop_year, --stop_month, --stop_day, --

stop_hour, --stop_minute: time period information. The 

period must be within the timestamps of the weather 

observations.  

We used a python script to form the list of parameters that 

change for each run (mainly, the timestamp for each 

simulation) and then passed them as a command to the CLI 

of WN. 

Once the simulation runs were configured, the simulation 

process was initiated. Initially, there was a total of 11230 

timestamps, among which 5615 had one or more faults in the 

power distribution system. The time difference between 

subsequent faults resembles heavy-tailed exponential 

distribution with a mean of 306.4 minutes, a median of 22 

minutes, a mode of 1 minute, and a standard deviation of 

995.8 minutes. However, wind fields were not properly 

produced for every case. Some cases did not converge, and 

some timestamps did not have all the required weather 

variables for modeling, so no resulting wind field was 

obtained for them. The number of successfully modeled 

cases is 10564, which yields an overall 94% rate of success 

in modeling.  

VI. FEATURE EXTRACTION FROM WIND FIELDS 

This section details the processing steps needed to extract 

features from wind fields and incorporate them with the rest 

of the datasets. The resulting wind field discussed in the 

previous section is represented as a shapefile, which is 

suitable for processing with ArcGIS Pro GIS software used 

for spatial analysis.  

First, the DefineProjection function is used to set the 

projection for a shapefile with wind fields. The datum and 

projected coordinate system (PCS) (WN only works in PCS) 

is defined by the elevation file that was used for the 

modeling. In our case – the USA Contiguous Albers Equal 

Area Conic USGS version [38]. The PCS specifies the 

geographic location of the wind field with respect to the 

power distribution grid.  

Next, to spatially correlate the feeders in the electric grid 

with the calculated wind field, the spatial join operation is 

performed (SpatialJoin). The goal is to match individual 

points in a wind field (each characterized by speed and 

direction) to the closest feeder in the network. As a result, 

each of the wind field points belongs to the closest feeder, 
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and the set of such points characterizes wind behavior for 

each feeder. To guarantee that each feeder would have at 

least one wind point assigned to it, we used the following 

parameters for spatial join [39]: join_one_to_one, 

keep_common, '1273 Meters'. The first specifies that each 

point must be matched only with one feeder, and the second 

instructs the program only to consider wind points within a 

specified distance, which is the last parameter. The spatial 

extent of 1273 meters is chosen out of consideration for the 

spatial resolution of the wind fields, which is a rounded 

length of the hypothenuse of a right-angled triangle with both 

sides equal to 900 meters.  

To summarize the wind behavior for a feeder, we 

calculated several statistics from wind field values: Mean 

speed, Max speed, Min speed, Mean direction, Max 

direction, and Min direction. We exported the resulting 

attribute table as a .csv file, ingested it by pandas, and 

calculated the statistical values. In such a way, for each 

timestamp, each feeder gets six additional wind field features 

that aggregate wind information over the feeder and adjacent 

territory.  

The described process took 11 hours and 48 minutes to run 

when utilizing 14 cores of Intel ® Core ™ i9-9900 CPU with 

3.1 GHz and 64 GB of RAM. Statistics could also be 

calculated by ArcGIS by appropriate functions; however, we 

found that processing times are longer in that case.  

The last step is to augment the existing features with the 

new wind features. That is done by a simple join operation 

using the feeder's name and timestamp as join keys. The 

result is a training dataset enhanced with six additional wind 

field features. The forming of the former is discussed in the 

next section. 

VII. ML MODEL TRAINING AND TESTING 

A. BASELINE MODEL 

The base model results for predicting SoR levels of 

outages in the system are considered to be a benchmark that 

the new model with additional features needs to be compared 

against. The foundation for the base model parameters 

comprises the weather variables obtained from ASOS 

observations. The training dataset uses the following features 

(dimensions): Air Temperature, Dew Point Temperature, 

Wind Direction in degrees from true north, Wind Speed, 

Wind Gust, and One-hour precipitation for the period from 

the observation time to the time of the previous hourly 

precipitation reset, Relative Humidity, Present Weather 

Codes. 

To ensure the robustness of the resulting metrics, we used 

nested cross-validation (CV) for temporal data with ten folds. 

The process is illustrated in Fig. 3. Size of validation and 

testing folds are set to 500. A nested CV is known to provide 

a virtually unbiased measure of performance [40]. We train 

the model on the training part of the split, optimize 

hyperparameters on the validation part and, finally, calculate 

metrics on the testing part. The data is then augmented with 

the next fold, and the process is repeated. To calculate the 

final metrics, we average the results of each fold. We note 

that the data is temporarily sorted, so there is no “leakage” of 

data. The loss function is set to LogLoss.  

The following metrics are utilized for performance 

assessment: Precision, Recall, F1 Score, Area Under the 

Precision-Recall Curve (PRC AUC), and Area Under the 

Receiver Operating Characteristic (ROC AUC) [41]. We use 

Catboost [42] as our ML algorithm. It has demonstrated 

better performance when compared to alternative methods 

[43], is easy to implement, and has valuable features [44]. 

B. MODEL TRAINING WITH WIND FIELD 
FEATURES 

The next step is to evaluate the performance of the ML 

algorithm trained using enhanced data with incorporated 

wind field features. The new features are joined based on the 

feeder ID and timestamps, which ensures spatiotemporal 

correlation. Having the exact same rows (examples) for both 

models ensures that the results are comparable. Special care 

is exercised when preprocessing the datasets because often 

the preprocessing procedures include dropping rows with 

missing data. In such cases, the same rows must be dropped 

from both training datasets.  

The newly created features enrich the dataset with 

information that was not available to the algorithm in the 

baseline case. The outage SoR levels are dependent on the 

speed and direction of the wind along the feeder.  

C. RESULTS DISCUSSION 

The performance results for both models are presented in 

Table I. As can be observed, the Catboost model with wind 

field features has outperformed the baseline model. The 

difference in ROC AUC is 1.0 %, Precision did not change, 

Recall has improved by 2.7%, F1 Score increased by 1.7%, 

and PRC AUC had a change of 1.1%.  

 

 
FIGURE 3. Nested cross-validation 

TABLE I.  

MODEL METRICS COMPARISON 

Metric Baseline WAFGWM Difference 

ROC AUC 89.2 90.2 1.0 

Precision 83.2 83.2 0.0 

Recall 70.3 73 2.7 

F1 Score 75.7 77.4 1.7 

PRC AUC 88.1 89.2 1.1 
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The feature's importance is analyzed next to better 

understand the value of the new proposed features. This is 

achieved by measuring the difference between the Catboost 

loss function with and without individual features. Table II 

shows the feature importance where the new wind features 

are in bold text, while old features are in italic. One can 

conclude that some of the new features are more important 

than the original weather parameters: max speed and mean 

speed have a more considerable weight when compared to 

the original wind speed. That is most likely due to the fact 

that the high wind speeds cause outages in the system, and 

the WAFGWM process is capable of capturing more 

granular phenomena in the area. A notable fact is that all of 

the direction features are among the least important features. 

This shows that for outage prediction, wind direction may be 

less important than wind speed when considered in absolute 

terms.  

VIII. CONCLUSION 

We concluded that the wind fields have a positive effect 

on the SoR model performance since the wind field 

characterizes the components that are strongly influenced by 

the topography and roughness length of the underlying 

surface that matches the topology of the feeders in the grid.  

Specifically, we demonstrated that: 

• The WAFGWM process improves the wind impact 

modeling on feeders since features from wind fields 

incorporate spatiotemporal dependencies. 

• The performance of the ML prediction model with the 

new wind field features outperforms the baseline 

model with no wind features. 

• The incorporation of the wind field features as one of 

the dimensions for the ML model boosts the SoR 

model performance. 

Given the findings, a promising approach is to account for 

wind direction in relation to feeder orientation. That is, a 

wind that is perpendicular to the feeder may have a higher 

impact than a wind directed along the feeder. Therefore, a 

closer analysis of wind directions is needed. For example, a 

more granular timescale needs to be used. These topics are 

left for future research. 
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