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Abstract—Event classification is one of the central components 

of automated disturbance analysis based on PMU measurements. 

Obtaining high-quality event labels remains a challenge for 

supervised learning-based classification of local and system-wide 

events in power grids due to its labor-intensive requirement. We 

present a sensitivity study considering rapidly refined, partially 

and fully inspected event labels that leads to evidence that 

hierarchical convolutional neural networks (HCNNs) outperform 

traditional classification models regardless of the quality of the 

available event labels. It is demonstrated that performance similar 

to the one obtained using entirely domain-driven labeling can be 

achieved as long as the involved expert does not mislabel more 

than ~5% of the event data captured by PMU measurements. 

 
Index Terms—Power system events, Situational awareness, 

Machine learning, Convolutional neural networks.  

I.  INTRODUCTION 

VARIETY of events are continually impacting the 

reliability of electric power systems. These events may be 

of different nature and type, caused by various factors, and 

typically occur at irregular time intervals. For instance, system-

wide fundamental frequency events are quite different in nature 

as compared to localized transmission line faults. 

Measurements of electrical quantities characteristic to the 

behavior of a power system can be leveraged to analyze such 

events and potentially mitigate their impact on the system and 

its customers. In particular, patterns in measurements taken by 

sparsely located phasor measurement units (PMUs) can be 

analyzed to help understand and characterize local and system-

wide events occurring across the system. With the recent 

deployment of a large number of PMUs across the U.S. power 

grid, and considering that PMU measurements are taken 

continuously in real time, an immense amount of PMU 

streaming data can be collected. This makes manual event 

analysis from PMU data practically infeasible.  

This paper focuses on a data-driven approach to automated 

detection and further characterization of local and system-wide 

events from multiple, sparsely located PMU measurements. 

Such an approach can serve in performing data-driven 

disturbance monitoring without requiring details of the 

underlying physical model of the power system. While having 

well-defined event labels (event type indicators) describing 
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PMU measurements helps in detecting and analyzing events, 

inspecting the measurements for potential event occurrences is 

labor-intensive and hence too costly. An additional challenge is 

posed when the physical model of the power system is 

unavailable, meaning that any event analysis would need to be 

carried out solely based on sparsely located PMU 

measurements. Thus, automated data-driven solutions to 

storing, processing and analyzing PMU measurements that do 

not require extensive labeling, as proposed in our study, are 

essential to effective event detection and classification. 

To leverage the value of PMU measurements, many well-

known predictive techniques have been utilized for automated 

event detection and fault analysis [1]. One line of research 

focuses on methods for extracting features from raw PMU 

measurements, which can be categorized in three main groups: 

1) signal transform-based methods, such as Discrete Fourier 

Transform [2]-[3], Wavelet Transforms [2]-[4], and Fast 

Discrete S-Transform [2], [3], [5]; 2) linear projection methods, 

such as Principal Component Analysis [6] and Minimum 

Volume Enclosing Ellipsoid [7]; and 3) time series methods, 

such as domain-specific Shapelets [2]-[3], statistical feature 

extraction [8], and Detrended Fluctuation Analysis [9]. 

Having features extracted from PMU measurements, the 

subsequent event classification can be formulated as a classical 

machine learning problem and has been approached by a 

number of methods including Agglomerative Hierarchical 

Clustering [7], Extreme Learning Machines [5], K-Nearest 

Neighbor [2], [3], [10], Support Vector Machines [2], [3], [10], 

Decision Trees [10] and, more recently, Convolutional Neural 

Networks (CNNs) [4], [11]-[13]. CNNs have been successfully 

applied for detecting and classifying events in other industrial 

applications such as online motor bearing fault detection and 

diagnosis [14], [15], which has shown to be beneficial to 

equipment condition maintenance. Hierarchical CNNs were 

also used for detecting multiple fault conditions and estimating 

fault severities at the same time [16]. In the realm of power 

systems, a CNN variant was designed for event detection in 

nonintrusive load monitoring (NILM) applications [17] and for 

model identification, event detection, and topology change 

location based on distribution-level PMU measurements [18]. 

Although a very recent study [19] has focused on PMU-based 

detection of system-wide frequency events alone, leveraging 
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CNN variants to detect and further characterize local and 

system-wide events from measurements captured by sparsely 

located PMUs has not been addressed yet in the existing 

literature. CNNs applied to other event classification tasks 

typically approach the multiclass classification problem 

directly instead of breaking it down into multiple, less 

challenging, problems. In most cases, the available PMU-

measured quantities are typically underutilized. Although 

several studies [20, 21, 22] discuss the utilization of different 

PMU quantities and the correlations among them, CNN models 

are capable of capturing such correlations by design. 

Another line of research focuses on event labeling as a 

pivotal prerequisite for event classification. Multiple event 

classes including generator loss, line fault, load switching, and 

series capacitor switching were analyzed in [7]. Reactive power 

switching and synchronous motor switching in addition to the 

other three classes (fault, generation loss, load switching) were 

considered in [2]. Normal operation, malfunctioned capacitor 

bank switching and regulator on-load tap changer switching 

were reported in [23]. Normal operation and events 

representing voltage disturbance, voltage sag, motor start, and 

high impedance fault were studied in [24]. Up to 13 event 

classes were distinguished by utilizing unsupervised clustering 

algorithms, and then characterized by performing supervised 

classification based on the identified categories in [25]. 

In this study, the event classification problem is formulated 

from a measurement analysis perspective. In that regard, we 

take a data-driven approach to automate the extraction and 

analysis of information from reported PMU measurements with 

the objective of detecting and further classifying power system 

events. Our contribution is the utilization of end-to-end deep 

learning based convolutional neural network (CNN) variants 

for classification of local and system-wide events. Using the 

model variants we demonstrate the following benefits: 1) 

automatic feature learning without the need of any feature 

engineering interventions, 2) ability to utilize all measured 

PMU quantities, as well as each quantity separately, and 3) 

superior performance over traditional models when only a small 

fraction of labeled PMU measurements is utilized. 

The paper first gives the background of the measurement 

problem we are addressing. The data and event classification 

models using the variants of CNN are discussed next. Then, the 

experimental study results are elaborated leading to the 

conclusions about the benefits of the leveraged model variants. 

The list of references is given at the end.  

II.  BACKGROUND 

A.  Event Classification 

In our case, events are instances of power system 

disturbances that are captured by PMU measurements. The 

objective of event classification is to identify the type (class) of 

an event once it appears in a measurement time interval. Event 

classification models are generally based either on simulated 

data from physical models of power grids or on measurements 

(data-driven models) collected from the grid [3]. In our study, 

neither the grid topology nor the geographical locations of the 

PMUs were made available by the data provider due to security 

and confidentiality constraints. This makes the simulation of a 

power system behavior involving different types of events 

infeasible. Hence, a data-driven approach is taken to indirectly 

infer the behavior of the physical model in situations of normal 

operation, and local and system-wide event occurrences by 

automatically processing PMU measurements. Unlike a 

physical model, a data-driven model learns from ‘examples’ of 

event occurrences. The time intervals and descriptions of event 

occurrences are recorded as an event log. As discussed in 

Section III-C, each record in an event log contains an event 

label that represents the type of the recorded event. The 

objective of a data-driven event classification model is to 

automatically learn the relationship between a collection of 

PMU measurements and their event labels recorded in a 

corresponding event log. For this purpose, any generic machine 

learning classifier can be incorporated in the event 

classification pipeline, illustrated in Fig. 1. 

B.  Challenges of Data-Driven Event Classification 

Measurement-related challenges. There are two major 

challenges concerning the PMU measurements in this study. 

1) Measurement quality. To inspect the quality of the 

measurements, we evaluated the status bits for the PMUs which 

were made available by the data provider. Status bits are 16-bit 

fields reserved for various flags that report the status of a PMU 

as device and communication network problems that may have 

resulted in corrupted or substandard measurements. However, 

given the lack of some critical information, such as the user 

settings for the PMUs, and compliance of the PMUs to a given 

version of the PMU standard, the information contained in the 

status bits was confirmed to be unusable. As a result, the 

measurement quality was assessed in the context of the analysis 

feasible for the development of a data-driven model. This 

process included filtering missing, duplicated, noisy and 

measurements with unreasonable scales, directly assessed from 

the reported measurements in the provided dataset. Specifically, 

it was observed that the fractions of missing values in 

voltage/current magnitude and frequency measurements of a 

single PMU may range from 0.69% to 30.01%. Across all 

PMUs, the fraction of missing values is 3.03%. The duplicate 

values found in the measurements were reported by a third of 

the PMUs (14 out of 43). The number of duplicates varies 

across different PMUs and time periods, but may reach up to 

~4.63 hours of duplicate measurements on certain days. Other 

inconsistencies were also observed in ~12% of the PMUs (5 out 

of 43), including unreasonable voltage levels (concluded by 

analyzing the scale of the measurements), constant frequency 

measurements of 60 Hz over time, and inaccurate timestamps. 

Among those five PMUs, two generated measurements 

containing 2-4% noisy samples, while the other three had a 

 
Fig. 1.  Data-driven event classification pipeline. 
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significantly lower fraction of noisy values. Through visual 

inspection, a domain expert observed that some measurement 

quality was improved over the years. The accuracy of the 

measurements that were not observed to be unreasonable or 

noisy cannot be verified as all PMU measurements were 

received from a third-party data provider, and it is assumed that 

the measurement accuracies are compliant with the PMU 

standard [26]; since the goal of this study is not to characterize 

the measurements or their accuracy, but to automatically 

recognize (detect and classify) events using measurements 

taken with an assumed (standard-compliant) accuracy.  

2) Scarce, imprecise, or unreliable event labels. Even with a 

set of high-precision and low-noise PMU measurements, 

building a data-driven event classification model requires an 

event log containing event labels associated with the 

measurements. Typically, PMU measurements are scarcely 

labeled as a large fraction of the events might not have been 

assigned event labels. In such cases, one solution is to label 

events by utilizing clustering techniques [7], [25] to 

automatically categorize the PMU measurements into a certain 

number of groups, each group supposedly representing a 

separate event type. The issue with this approach is the lack of 

domain knowledge creating the difficulty to associate the 

detected labels with certain types of well-known disruptive 

events. In addition, even when some event labels are provided, 

they are often imprecise or unreliable. For instance, the event 

log used in this study was provided by multiple data 

contributors and created with a combination of automatic event 

labeling and labeling based on subsequent investigation. The 

events were triggered by conditions including high/low voltage, 

high zero-phase current, generator breakers opening/closing, 

etc. The triggered events varied greatly among the data 

contributors and were recorded by instruments such as digital 

fault recorders (DFRs), digital relays, and PMUs. The events 

were initially labeled by operators that used the time reference 

from supervisory control and data acquisition (SCADA) 

systems and associated software tools; which is considerably 

less accurate that the time-tag information from the PMUs and 

their embedded GPS receivers, resulting in imprecise event 

labels. In some cases, the timestamps had to be entered 

manually into the event log, thus there is a considerable 

likelihood of human error, making some recorded event labels 

unreliable. As a solution, an additional domain expert is needed 

to help assign more precise labels by defining hard-coded rules 

[28]-[29] or visually inspecting a portion of the events that can 

be used to build a data-driven event classification model. While 

this approach incurs additional cost of a domain expert, it is 

expected to yield more reliable event labels. 

Data-model related challenges. Despite the modeling 

advances in event classification from PMU measurements, 

existing studies seem to suffer from the following limitations: 

Model capacity. As discussed in Section II-A, a generic data-

driven classifier needs to be built solely based on the PMU 

measurements. The challenge of classifying events in such a 

scenario is to infer event patters from the PMU measurements 

while having a notion of neither the physical model of the 

underlying power system nor the specifics of the measurement 

system. The majority of previous studies on data-driven event 

classification are based on traditional machine learning models 

that face challenges related to high dimensionality, 

autocorrelation, and above all require features to be handcrafted 

or extracted from PMU measurements in advance. In either 

case, the classification performance depends on the method 

(e.g., a specific transform) used to engineer the features derived 

from the PMU measurements. As a result, model design based 

on automatic feature learning is essential towards attaining a 

more versatile and accurate event classification [4]. 

Local and system-wide event characterization. A plethora of 

studies [6], [8], [9], [19], [30] utilize models limited to 

conventional event detection from PMU measurements and are 

not capable of further classifying events into different 

categories once detected. The studies that extend this problem 

to event classification seem to either consider a more specific 

categorization of events [2], [7] or focus on subtypes of a major 

event type [12], [25], [29]. A more general categorization 

suggests that events may be localized once they occur (e.g., line 

faults), or have a system-wide manifestation (e.g., fundamental 

frequency events). Considering the geographical sparsity of 

PMU devices across the U.S. power system, covering less than 

5% of the system’s electrical buses, the odds of a local event 

occurring in the close proximity of a PMU are rather small. This 

poses an additional challenge of characterizing local events 

based on sparse measurements from PMUs that might be 

located away from the events’ occurrence points. 

III.  DATA 

A.  PMU Measurements 

The measurements used in this study were reported by PMUs 

placed sparsely at unknown locations across the Western 

Interconnection of the U.S. power grid with over 20,000 buses. 

The measurements were collected over a two-year period 

(covering 2016 and 2017) in a dataset that amounts to the size 

of 7 TB. As mentioned earlier, neither the geographical 

locations of the PMUs nor the grid topology was made available 

by the data provider. For each PMU, multiple quantities were 

recorded including positive sequence (PS) voltage magnitude, 

PS current magnitude and system frequency, among others. The 

first two will be referred to as ‘voltage’ and ‘current’ for the 

sake of brevity. The measurements were collected over the two-

year period (covering 2016 and 2017) at reporting rates of 30 

and 60 frames per second (fps). The calculated PMU-measured 

quantities were assigned timestamps in UTC. 

B.  Measurement Preprocessing 

The provided PMU dataset, in its raw form, was not readily 

applicable to event classification, mostly due to three reasons: 

(1) the data format of the original PMU measurements, (2) the 

high data dimensionality, and (3) the measurements’ quality 

issues from Section II-B related to missing, duplicate as well as 

noisy measurements. To alleviate these issues, the 

measurements underwent four stages of preprocessing prior to 

event classification. 

1) Measurement cleansing. In the first stage, a data cleansing 

algorithm iterated the entire dataset of measurements in order 

to filter out PMUs reporting noisy measurements with 
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unreasonable scales across known voltage levels. It used simple 

thresholds to determine if the data stream exists, i.e. if there are 

any missing measurements, and then it removed duplicate 

measurements. All of the aforementioned steps were taken as 

precautionary preprocessing steps given that the provided status 

bits (refer to Section II-B) were deemed unreliable. 

2) Measurement segmentation. The cleansed PMU 

measurements were divided, i.e. segmented into segments of 

measurements taken over 1-minute time intervals. The choice 

of the segmentation window size is based on the resolution on 

which the events were labeled and the reasoning behind it is 

discussed in Section III-C. Due to the different rates (30 fps and 

60 fps) used to report the PMU measurements, a segment of 1-

minute corresponds to 1,800 and 3,600 reported values when 

reporting with 30 fps and 60 fps, respectively. To avoid 

underutilization of data relevant to the event classification task, 

the latter reporting rates were down sampled through data 

averaging since the average as a central statistic is sensitive to 

peaks and other fluctuations in the measurements indicative of 

event occurrences. It should be noted that the only purpose of 

the down sampling is to get all PMUs’ measurements to be 

consistent in terms of length (i.e. dimension) in order to 

represent a valid input to data-driven models aimed at learning 

to automatically detect and classify events by analyzing the 

measurements. Thus, down sampling of the original reporting 

rates of the respective PMUs did not affect the model 

robustness. This was empirically observed by considering only 

60 fps measurements and comparing the event classification 

performance of the best-performing model in this study 

(discussed later in Sections IV-C and IV-D) before and after 

down sampling. The results are summarized in Table I. 
TABLE I 

EVENT CLASSIFICATION PERFORMANCE (IN TERMS OF AUPRC) ON 

MEASUREMENTS REPORTED AT 60 FPS BEFORE AND AFTER DOWN SAMPLING.   

Before down sampling After down sampling 

0.871 0.867 

It can be observed that the obtained performances before and 

after down sampling differ in less than 1% and can be 

considered rather comparable. This suggests that the down 

sampling did not have an impact on the subsequent event 

classification performance, supporting the model’s robustness 

to preprocessing decisions of this sort. 

3) Segment aggregation. One of the main stumbling blocks 

to data-driven classification, particularly when using traditional 

machine learning models, is high data dimensionality. In this 

study such a challenge was posed due to the high 

dimensionality (i.e. length) of the segments processed in stage 

2). In addition, some of the segments had missing values 

(voltage and current segments in particular) as well as duplicate 

values which have been observed in segments from about third 

of the PMUs. The segments from all PMUs were aggregated to 

a lower resolution by binning the 1,800 values of every segment 

into non-overlapping buckets of 10 consecutive values each. 

The buckets were then summarized by taking the range of their 

constituent values, resulting in an aggregated segment 

representation of length 180. Such aggregation is expected to 

preserve the peaks caused by measurement fluctuations in the 

segments, which are presumably one of the key characteristics 

most informative for detecting and classifying events. 

4) Segment summarization. The segment aggregation stage 

can bypass missing and duplicate values, nonetheless, any noise 

present in the initial segments might have easily breached into 

the aggregated segments. Moreover, although aggregated, 

having to consider segments generated by all PMUs for event 

classification increases the complexity of the problem. This 

poses a challenge particularly for recognizing local events, 

which are typically registered by only a few PMUs. Therefore, 

a joint representation of all PMU segments is considered. More 

precisely, for each time interval, a weighting scheme was used 

to summarize the aggregated segments for that specific time 

interval into a single segment, called a barycenter. The 

barycenters were computed by minimizing a differentiable loss 

function based on Soft Dynamic Time Warping (Soft-DTW) 

[31], designed specifically to preserve the smoothed dynamic 

distances over all possible alignments between time series (i.e. 

segments in our case). When computing each barycenter, the 

PMUs were assigned importance weights, calculated as the 

normalized standard deviations of their respective segments, 

and updated dynamically for every time interval. The benefits 

of such segment summarization are three-fold. First, noise can 

be filtered indirectly by the soft aggregation of the segments. 

Second, by considering a weighting scheme, even in the case of 

a single PMU registering a local event, such PMU’s 

measurements would gain a larger weight and hence the event 

would be reflected in the corresponding barycenter without 

being dominated by normal operation measured by the other 

PMUs. Finally, as a biproduct, the overall measurements’ 

dimensionality is additionally reduced since barycenters 

summarize the information from all PMUs’ segments, 

subsequently allowing for lightweight event classification. 

C.  Event Labeling 

Events of interest. In addition to normal system operation, this 

study considers two major event types: local and system-wide. 

The former is localized once it occurs (e.g., line faults), while 

the latter has a system-wide manifestation (e.g., fundamental 

frequency events). These two types of disturbances differ in the 

sense that a local event is typically registered in measurements 

from only one or a few PMU devices, whereas a system-wide 

event is expected to be registered in measurements from 

multiple PMUs located throughout the system. Examples of 

such contrasting events are presented in Fig. 2: a) the top 

subfigure shows a dip in voltage measurements from only one 

PMU (depicted in purple color). It indicates an event 

occurrence around 11:26:16, which was localized as it did not 

spread across the system or otherwise it would have been 

registered by some of the other PMUs.; and b) the bottom 

subfigure illustrates a different (system-wide) scenario in which 

the voltage measurements from all PMUs start fluctuating 

around the same time (08:22:15), clearly as a result of a 

disturbance which manifests itself across the entire system. 

Original (raw) event log. The original dataset was provided 

along with a collection of 4854 event occurrence records, 

referred to as event log. Each record contains an event’s start 

and end timestamps, category (event type/label), cause (planned 
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or forced), and a short description. Initially, the records of 

planned maintenance events were filtered out from the event 

log. Next, only records of line faults and fundamental frequency 

events, as event types representative of local and system-wide 

events, respectively, were considered. 

The labels in the originally provided event log were created 

by different operators but not consistently applied since most 

likely the PMUs are located in substations of different operating 

companies. In addition, not all events that occurred in the period 

of 2 years (over which the measurements were collected) were 

initially labeled, while the labels for some events in the log were 

imprecise or unreliable, assigned probably without any 

verification involving a third party. Moreover, when creating 

the labels, the operators have not analyzed the PMU-level time-

tag information to pinpoint their labels to particular timestamps 

in the PMU measurements. Instead, the time reference from 

SCADA and associated software tools was used, thus there is 

no exact correlation between the PMU timestamps and the time 

reference used by the operators. As a result, the time intervals 

in many event records were considerably broad and contained 

measurement segments not necessarily related to the event 

occurrences. Due to these data quality issues, the provided 

event log, in its raw form, was not directly applicable to the 

downstream task of event classification. To alleviate this 

shortcoming, we decided to involve a power system domain 

expert in reviewing the event labeling process to verify and 

refine the existing event records as well as to label additional 

events that the operators did not record in the original event log. 

This process was performed in three stages which resulted in 

the creation of three separate event logs, described as follows. 

Rapidly refined event log. The original event log was 

initially refined by the domain expert skimming thorough the 

log and removing the incorrect records in which the events were 

clearly mislabeled. The time intervals of the filtered records 

were generally quite broad and contained measurement 

segments around the events, considered to be less informative 

for event classification. Thus, the expert additionally narrowed 

down the time intervals to 1 minute each so as to eliminate some 

of the measurements unrelated to the events. The domain expert 

examined different interval lengths and selected the interval 

length of 1 minute based on the maximum duration of the 

observed events. Consequently, 1-minute intervals are expected 

to contain the entirety of the events (from the start to the end) 

without picking up considerable measurement segments around 

the events. Finally, 1-minute intervals of normal system 

operation were also handpicked by the domain expert and 

included in the refined event log. 

Partially inspected event log. Another version of the 

original event log was created in which the domain expert 

narrowed down the events’ time intervals to a minute 

resolution, as with the rapidly refined log. As multiple events 

may have occurred within the same time interval, event records 

with such intervals were divided into several separate records. 

Subsequently, all records were adjusted so that the events are 

‘centered’ approximately in the middle of the intervals. This 

‘standardization’ of the events’ positions within their respective 

intervals is performed to aid the downstream event 

classification when using traditional models, discussed later in 

Section IV. The updated event records were then visually 

verified by the domain expert, while any events the expert 

additionally identified in the process were also included in the 

log. In contrast to the rapidly refined event log, normal 

operation records were selected automatically by extracting 3-

minute measurement segments before the start of each event. 

Fully inspected event log. The partially inspected log was 

further improved by replacing the automatically selected 

normal operation records with records carefully handpicked by 

the domain expert thought visual inspection. The records of line 

and frequency events from the partially inspected log were 

visually inspected one more time and several additional events 

were discovered in the process. After completing these steps, 

the resulting event log was considered to be fully inspected. 

For a summary of the advantages and limitations of the 

described event logs, the reader is referred to Table II. 

TABLE II 
ADVANTAGES AND LIMITATIONS OF DIFFERENT EVENT LOGS. THE DOMAIN EXPERT WAS WORKING APPROXIMATELY 3 HOURS/DAY (*). THE ‘+’ SYMBOL 

INDICATES ADDITIONAL (SECONDARY) VISUAL INSPECTION. 

Event log 
Handpicked normal 

operation segments 

Narrower time 

intervals 

Single event per 

interval 

Precise intervals 

(centered events) 

Visually 

inspected events 

Labeling 

time* 

Rapidly 

refined      38 hours 

Partially 

inspected      ~2 months 

(120 hours) 

Fully 

inspected      + 
2.5 months 

(150 hours) 

 

  
Fig. 2.  PS voltage magnitude during a local (top) and system-wide (bottom) 

event. Measurements taken by different PMUs are depicted in different colors. 
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D.  Associating Measurement Segments with Event Labels 

The preprocessed measurement segments (Section III-B) 

were labeled using the information available in the three event 

logs (Section III-C). This was achieved by intersecting the time 

intervals of the segments with those of the event logs’ records. 

If a time interval of an event record was found to overlap with 

a segment’s time interval then the segment was labeled with the 

corresponding event type (line or frequency) from the record. 

Otherwise, such a segment was labeled as normal operation. 

This labeling process was repeated for each of the three event 

logs, resulting in three different event classification scenarios. 

IV.  DATA-DRIVEN EVENT CLASSIFICATION 

Hypothesis. The main hypothesis of our study is that local 

and system-wide events can be detected and classified based on 

reported sparse PMU measurements, without any additional 

information about the underlying measurement or power 

system. 

Assumptions. The model, vintage, and user settings of the 

PMUs are not revealed due to the security and data 

confidentiality policies of the contributors (utility companies). 

It is known that the PMUs are sparsely located across the power 

system, however, their locations (substations) and the grid 

topology are unknown due to the aforementioned reasons. This 

also holds for the specifics of the communication subsystem 

and the locations and exact number of Phasor Data 

Concentrators (PDCs). 

Objective. The objective is to develop a supervised data-

driven model that can be trained on historical data that includes 

(1) historical PMU measurements, and (2) event labels (i.e. 

event indicators or annotations). More specifically, let 𝒟 =
{(𝐱1, 𝑦1), … , (𝐱𝑁, 𝑦𝑁)} be a set of labeled historical 

measurement segments of a single PMU-measured quantity 

(e.g., PS voltage magnitude or PS current magnitude or 

frequency). A segment 𝐱𝑖 = [𝑥𝑖
1, … , 𝑥𝑖

𝑇] ∈ ℝ𝑇 measured over 

an interval [𝑡1, 𝑡𝑇] is assumed to be preprocessed (following the 

procedure in Section III-B) and associated with an event label 

𝑦𝑖 ∈ {0, … , 𝐶}. In this study, the possible event class labels are 

𝑦𝑖 ∈ {𝑐𝑛 , 𝑐𝑙 , 𝑐𝑓} ⊂ ℤ0+, where 𝑐𝑛, 𝑐𝑙 , 𝑐𝑓 are used to denote 

‘normal operation’, ‘line fault’, ‘fundamental frequency event’, 

respectively. 

Upon training a model based on the data in 𝒟, the use of the 

trained model is to automatically classify (i.e. predict) the event 

label 𝑦 of a previously unobserved measurement segment 𝐱. 

A.  Traditional Classification Models 

From a machine learning perspective, the event 

classification problem formulated above can be approached as 

a typical 3-class classification problem. Thus, several 

traditional multiclass models can be leveraged for event 

classification, each of which is briefly described as follows. 

Decision Tree (DT) [32]. A decision tree’s nodes are created 

by splitting 𝒟’s feature space such that each of a node’s children 

contains a subset of 𝒟 in which as much segments as possible 

are labeled with the same event. Once the 𝑘-th node is created, 

it is used to determine an optimal split 

𝜃∗ = arg min
𝜃

ℒ𝐷𝑇(𝒟𝑘 , 𝜃)                            (1) 

where 𝒟𝑘 ⊆ 𝒟 is a subset of segments at node 𝑘, 𝜃 = (𝑗, 𝜏) is 

a candidate split that splits a feature 𝑗 = 1, … , 𝑇 based on the 

threshold 𝜏 ∈ ℝ, and ℒ𝐷𝑇(∙) is a loss function measuring the 

class impurity of node 𝑘 when split using 𝜃. This procedure is 

recursively repeated for the child nodes of node 𝑘 until 𝒟 

cannot be further partitioned or a desired tree depth is reached. 

Once build, the DT’s split conditions are used to ‘navigate’ an 

unlabeled segment 𝐱 through the tree until a terminal (leaf) node 

𝑙 is reached. The probability of a class 𝑐 is then determined as 

𝑃(𝑦 = 𝑐|𝐱) = 1/|𝒟𝑙| ∑ 𝐼(𝑦𝑖 = 𝑐)

𝑦𝑖∈𝒟𝑙

                  (2) 

Multinomial Logistic Regression (MLR) [33]. In the case of 

MLR, the probability of an event 𝑦 given a segment 𝐱 is defined 

as an output of a softmax function 

𝑃(𝑦 = 𝑐|𝐱) =
exp (𝐰𝑐

⊤𝐱 + 𝑏𝑐)

∑ exp (𝐰𝑗
⊤𝐱 + 𝑏𝑗)𝑗

                  (3) 

where 𝐰𝑐 ∈ ℝ𝑇 and 𝑏𝑐 ∈ ℝ are the model’s coefficients and 

bias term for class 𝑐 ∈ {0, … , 𝐶}, respectively. Using (3), an 

MLR is fitted by minimizing the categorical cross-entropy loss: 

ℒ𝑀𝐿𝑅 = − ∑ ∑ 𝐼(𝑦𝑖 = 𝑐) log 𝑃(𝑦𝑖 = 𝑐|𝐱𝑖)                         

𝑁

𝑖=1

𝐶

𝑐=0

+ 𝐼(𝑦𝑖 ≠ 𝑐) log(1 − 𝑃(𝑦𝑖 = 𝑐|𝐱𝑖))          (4) 

The above loss is minimized using gradient-based methods 

since ℒ𝑀𝐿𝑅 is convex and its optimization is unconstrained. 

Feed-Forward Neural Network (FFNN) [34]. A 

conventional, single-layer, neural network would map each 

segment 𝐱𝑖 to a hidden, lower dimensional, feature vector 

ℎ(𝐱) = 𝐖⊤𝐱 + 𝐛                                    (5) 

where 𝐖 ∈ ℝ𝑇×𝐻 and 𝐛 ∈ ℝ𝐻 denote the projection matrix and 

the corresponding bias vector, respectively. Thereafter, the 

model parameters are learned by minimizing the categorical 

cross-entropy loss w.r.t. the hidden vectors:  

  ℒ𝐹𝐹𝑁𝑁 = − ∑ ∑ 𝐼(𝑦𝑖 = 𝑐) log 𝑃(𝑦𝑖 = 𝑐|ℎ(𝐱𝑖))

𝑁

𝑖=1

𝐶

𝑐=0

 

                                + 𝐼(𝑦𝑖 ≠ 𝑐) log (1 − 𝑃(𝑦𝑖 = 𝑐|ℎ(𝐱𝑖)))  (6) 

Multiclass Support Vector Machine (MCSVM) [35]. A 

binary classification SVM learns the coefficients of a 

hyperplane that optimally separates two classes of data. The 

dual formulation of this objective is given by 

𝛂∗ = arg min
𝛂

𝛂⊤𝐐𝛂 − 𝐞⊤𝛂                          (7) 

subject to [𝑦1, … , 𝑦𝑁]⊤𝛂 = 0          0 ≤ 𝛼𝑖 ≤ 𝜆, ∀𝑖 = 1, … , 𝑁     
where 𝛂 are the dual coefficients, 𝜆 is a regularization 

parameter, 𝐞 ∈ {1}𝑁, and 𝐐 = [𝑦𝑖𝑦𝑗𝒦(𝐱𝑖, 𝐱𝑗)]
𝑁×𝑁

 with 

𝒦(𝐱𝑖 , 𝐱𝑗) being a kernel describing the similarity between 𝐱𝑖 

and 𝐱𝑗. After solving (7), the decision value for a segment 𝐱 is 

calculated as 𝑓(𝐱) = ∑ 𝑦𝑖𝛼𝑖𝒦(𝐱𝑖 , 𝐱)𝑖 + 𝑏. The event class of 𝐱 

is determined by arg min𝑐 𝑓𝑐(𝐱), where 𝑓𝑐 is an SVM separating 

all segments from class 𝑐 and those from any class other than 𝑐. 

B.  Single-Channel Convolutional Neural Networks 

Unlike traditional classification models, convolutional neural 

networks [36]-[37] include layers capable of performing 

convolution operations. This makes them particularly desirable 
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for modeling measurement changes in response to external 

events. Since the problem formulation (beginning of Section 

IV) assumes 𝐱 to be a univariate measurement segment (e.g., a 

segment of PS voltage magnitude or PS current magnitude or 

frequency), a so-called single-channel CNN (SC-CNN) can be 

leveraged. In this context, ‘single-channel’ refers to SC-CNN’s 

capability to process homogeneous measurements of a single 

PMU-measured quantity. The building blocks of SC-CNN are 

described as follows. 

Convolutional layer. The central component of an SC-CNN 

is the convolutional layer which transforms an input segment 𝐱 

by convolving it with a 𝜔-sized filter (or kernel) 𝐤𝑘: 

𝑣𝑖𝑘 = 𝐱𝑖:𝑖+𝜔
⊤𝐤𝑘        ∀𝑖 = 1, … , 𝑇 − 𝜔 + 1             (8) 

where 𝐱𝑖:𝑖+𝜔 = [𝑥𝑖 , … , 𝑥𝑖+𝜔−1]. The operation (8) is computed 

for each 𝑘 = 1, … , 𝐾, meaning that 𝐾 different filters are 

applied to 𝐱, whose outputs are passed through a rectified linear 

activation function, i.e. �̂�𝑖𝑘 = max(0, 𝑣𝑖𝑘). Note that the filters 

are not user-defined, but are automatically learned instead.  

The activated filter outputs �̂�𝑘 = [�̂�𝑖𝑘]𝑖=1
𝑇−𝜔+1 can be thought 

of as different transformations of 𝐱, from which features are to 

be further learned automatically. Nonetheless, �̂�1, … , �̂�𝐾 are 

expected to preserve the discriminative shapes regardless of 

where they appear in 𝐱, which allows for learning time-

invariant warped features in the subsequent layers [37]. One can 

define an arbitrary number of convolutional layers; the more 

layers are included, the “deeper” the network is considered to 

be. Depending on the learning problem, more layers might need 

to be employed to learn non-linear features of higher-order that 

capture certain discriminative characteristics which otherwise 

would not be perceptible after a single convolution. 

Pooling layer. To emphasize the high-response 

characteristics in the convolved segment, the features produced 

by each filter are summarized through global average pooling: 

𝑔𝑘 =
1

𝑇 − 𝜔 + 1
∑ �̂�𝑖𝑘

𝑇−𝜔+1

𝑖=1
                           (9) 

The pooling operation has an effect of down sampling the 

filtered (convolved) features, while being robust to changes in 

the positions of the shapes preserved in those features. It is also 

crucial as it introduces a certain degree of scale invariance (i.e. 

resolution invariance). The features extracted upon pooling the 

measurements are, to some extent, resilient to scale changes 

(which in this study are posed by the two different measurement 

reporting rates). 

Hidden and output layers. The pooled features 𝐠 =
[𝑔1, … , 𝑔𝐾] are mapped to a hidden representation: 

ℎ(𝐠) = 𝐖⊤𝐠 + 𝐛                                 (10) 

Subsequently, the softmax function (3) is used to estimate the 

event class probabilities 𝑃(𝑦 = 𝑐|ℎ(𝐠)), ∀𝑐 ∈ {0, … , 𝐶}. 

Parameter learning. The parameters from all layers of the 

SC-CNN, (𝐤𝑘
∗ , [𝐖∗, 𝐛∗], [𝐰𝑐

∗, 𝑏𝑐
∗]), are learned by minimizing 

ℒ𝑆𝐶𝐶𝑁𝑁 = − ∑ ∑ 𝐼(𝑦𝑖 = 𝑐) log 𝑃(𝑦𝑖 = 𝑐|ℎ(𝐠𝑖))

𝑁

𝑖=1

𝐶

𝑐=0

 

                               + 𝐼(𝑦𝑖 ≠ 𝑐) log (1 − 𝑃(𝑦𝑖 = 𝑐|ℎ(𝐠𝑖))) (11) 

C.  Multi-Channel Convolutional Neural Networks 

Multi-channel CNNs (MC-CNNs) are a generalization of 

SC-CNNs, capable of leveraging multivariate PMU 

measurements. Namely, abnormal system behavior may not 

always be perceptible from the measurements of a single PMU-

measured quantity. Moreover, patterns that further characterize 

different events typically occur across measurements of 

multiple PMU quantities. To capture such patters relevant to 

event classification by utilizing all available PMU quantities, 

two multi-channel CNN architectures are presented. 

Parallel Channel Filtering CNN (PCF-CNN). Following 

the formulation (beginning of Section IV), 𝐱 is assumed to be a 

segment of measurements of a single PMU quantity. Thus, 𝐱 

can carry information only about the PS voltage magnitude or 

PS current magnitude or system frequency, measured by all 

PMUs in the system. In contrast to SC-CNN or any traditional 

model, a PCF-CNN utilizes the segments of all available PMU 

quantities. In that regard, let 𝐱(𝑚) be a segment of 

measurements of the 𝑚-th PMU quantity, for all 𝑚 = 1, … 𝑀. 

An 𝑀-channel PCF-CNN filters the segments of 𝑀 quantities 

separately, thus performing parallel channel filtering: 

�̂�𝑖𝑘
(𝑚)

= max (0, 𝐱𝑖:𝑖+𝜔
(𝑚) ⊤

𝐤𝑘
(𝑚)

)                      (12) 

Upon filtering, the features produced by each channel are 

separately summarized through global average pooling and 

passed to a hidden layer as 

ℎ(𝐠(1)|| 𝐠(2)|| … || 𝐠(𝑀))                            (13) 

where 𝐠(𝑚) are the features pooled from the 𝑚-th channel and 

|| is a concatenation operator. The event class probabilities are 

then estimated using (3) and the parameters from all layers are 

determined by minimizing (11). 

Simultaneous Channel Filtering CNN (SCF-CNN). Unlike 

PCF-CNN, this architecture aims to leverage the segments of 

all PMU quantities by filtering all channels simultaneously. 

Formally, the key difference to PCF-CNN is that SCF-CNN 

learns a joint set of filters {𝐤1, … , 𝐤𝐾} for all channels, i.e. 

�̂�𝑖𝑘
(𝑚)

= max (0, 𝐱𝑖:𝑖+𝜔
(𝑚) ⊤

𝐤𝑘)                       (14) 

The activated filter outputs from each channel are then 

aggregated and subsequently pooled, i.e. 𝐠 = ∑ �̂�𝑘
(𝑚)

𝑚 . The rest 

of the architecture is identical to that of PCF-CNN. 

D.  Model Variants 

Standard variants. According to their definitions, the models 

described in Sections IV-A, IV-B, and IV-C are addressing the 

event classification problem by directly classifying segments 

into one of 𝐶 + 1 classes (including the normal operation class); 

thus, they are considered standard model variants. In that 

regard, upon obtaining the optimal parameters 𝚯∗, a standard 

classification model predicts the event class of a segment 𝐱 as 

the most probable class given 𝚯∗: 

𝑓(𝐱; 𝚯∗) = arg max
𝑐

𝑃(𝑦𝑖 = 𝑐|𝐱; 𝚯∗)               (15) 

Hierarchical variants. Considering the nature of the event 

classification problem, it is unique in the sense that not all 

classes differ in the same manner. More precisely, from the 

domain it is known upfront that the normal operation class is 

expected to be much more distinctive as it is the only class 

carrying information about normal system operation, while all 

other classes represent different types of system disturbances. 



 

 
8 

Therefore, hierarchical variants of event classification models 

can be leveraged to account for the distinctiveness of the normal 

operation class. Given that the considered event classes in this 

study are 𝑐𝑛, 𝑐𝑙 and 𝑐𝑓, bi-level hierarchical model variants can 

be defined to break down the 3-class problem into two binary 

classification problems which are less challenging to address. 

In that regard, a hierarchical model would essentially represent 

a cascade of two consecutive binary classifiers; the first trained 

to distinguish normal (𝑐𝑛) from abnormal (𝑐 ≠ 𝑐𝑛) segments, 

followed by another classifier tailored to further classify the 

detected abnormal events into line faults (𝑐𝑙) or frequency 

events (𝑐𝑓). In essence, the former has the role of an event 

detector, while the latter can be considered an event recognizer. 

Now, given a segment 𝐱, let us denote the raw outputs (decision 

values or logits) of the former and latter classifiers by 𝑓(𝐱) and 

𝑔(𝐱), respectively. The event detector models the event 

probability as a sigmoid function 𝑃𝑓(𝑦 = 𝑐𝑛|𝐱) = 𝜎(𝑓(𝐱)) =

1/(1 − 𝑒−𝑓(𝐱)), also denoted by 𝑝 for simplicity. Similarly, 𝑞 =

𝑃𝑔(𝑦 = 𝑐𝑓|𝐱) = 𝜎(𝑔(𝐱)) is estimated by the event recognizer, 

with 𝑐𝑓 being the ‘positive’ class. The hierarchical class 

probabilities are then calculated as 

[𝑃(𝑐𝑛|𝐱), 𝑃(𝑐𝑙|𝐱), 𝑃(𝑐𝑓|𝐱)] = { 
[𝑝, 𝑝/2 , 𝑝/2 ] ,   if 𝑝 ≤ 0.5 

  [0,1 − 𝑞, 𝑞] ,       otherwise 
 

For an illustration of the standard and hierarchical variants of 

the multi-channel CNN models, the reader is referred to Fig. 3. 

V.  EXPERIMENTAL RESULTS 

A.  Experimental Setup 

Data preparation. The preprocessed version of the two-

year PMU measurement dataset (Section III) was used in all 

conducted experiments. To account for patterns characterizing 

the different seasons throughout the year, the dataset was 

initially split into a training set containing all measurement 

segments recorded in 2016, and a separate holdout (test) set that 

encompassed all measurement segments from 2017. The 

training segments were labeled using the event logs described 

in Section III-C, thus producing three labeled versions of the 

training set. The segments in the holdout set were carefully 

labeled and thoroughly verified by the domain expert through 

visual inspection, to allow for representative assessment of 

event classification performance. For the distribution of 

segments among the event classes in the training set (under each 

labeling scenario) and the holdout set, refer to Table III. 
TABLE III 

DISTRIBUTION OF SEGMENTS LABELED AS NORMAL OPERATION (NO), LINE 

FAULT (LF), OR FUNDAMENTAL FREQUENCY (FF). 

Event 

class 

Training using different event logs(’16) Testing(’17) 

Rapidly 

refined 

Partially 

inspected 

Fully 

inspected 
Holdout 

NO 467 1311 481 426 

LF 454 227 229 273 

FF 249 210 211 180 

Total 1170 1748 921 879 

Model parameter settings. Throughout all experiments, the 

traditional data models were run with the following settings: DT 

used Gini Index as a class impurity measure without a tree depth 

limit; FFNN utilized one hidden layer with a hidden dimension 

of ℎ(𝐱) = 30; MCSVM was run with a linear kernel and a 

regularization penalty of 𝜆 = 1. Each of the CNN-based models 

(SC-CNN, PCF-CNN, and SCF-CNN) incorporated two 

convolutional layers, followed by one hidden layer. The initial 

convolutional layer utilized 𝐾 = 150 filters, each of size 𝜔 =
30, with 100, 15-sized filters being employed in the subsequent 

layer. In consistence with FFNN, the hidden layer dimension 

was set to 30. All neural network-based models were trained in 

30 epochs with a batch size of 16, and a learning rate of 0.001. 

Computational infrastructure. The raw measurements 

(Section III-A) were queried and preprocessed using Apache 

Spark 3.0 on an Apache Hadoop HPC cluster. All data models 

were implemented in Python 3.7 and TensorFlow 1.15 and run 

on an Ubuntu Linux 18.04.5 machine with 64 GB of memory 

and a 40-core Intel(R) Xeon(R) Gold 6230 CPU at 2.1 GHz. 

Evaluation metrics. All models were evaluated using well-

established classification metrics [38]-[39] including: (1) 

AUPRC (Area Under the Precision-Recall Curve), Precision, 

Recall and F1-score. Due to the multiclass problem formulation 

the values of each metric were macro-averaged over all classes. 

B.  Overall Effect of Event Labeling on Event Classification 

To inspect the effect that the event labeling process has on the 

downstream event classification performance, all traditional 

and CNN-based data models were compared using each of the 

three event logs (Table III), thus defining three labeling 

scenarios. Both the standard and hierarchical variants of each 

model were run. Due to space limitation only the performances 

of the best-performing hierarchical models are reported. The 

obtained results in terms of the evaluation metrics (Section V-

A) are summarized in Table IV. Note that the names of the best-

performing hierarchical models are prefixed with an “H”. 

One can observe that the CNN variants outperform 

traditional models. Specifically, the convolutional neural 

network models that consider the voltage measurements (either 

in a single or in a multi-channel mode) generally outperform the 

traditional classification models, as well as the single-channel 

CNNs trained on the current or frequency measurements. This 

suggests that voltage measurements are more informative for 

event classification compared to current and frequency. Multi-

channel CNNs improve further upon SC-CNN (V) with HSCF-

CNN being the best-performing model on the rapidly refined 

event log while HPCF-CNN is showing great advantage over  

  
Fig. 3.  Model architectures of standard and hierarchical PCF/SCF-CNN. 
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TABLE IV 
EVENT CLASSIFICATION PERFORMANCE FOR DIFFERENT LABELING SCENARIOS. 

Model variant \ Metrics AUPRC Precision Recall F1-score 

Rapidly refined 

Traditional 

DT 0.622 0.725 0.740 0.726 

MLR 0.802 0.783 0.758 0.754 

FFNN 0.845 0.778 0.769 0.758 

MCSVM 0.816 0.770 0.764 0.759 

Single 

channel 

SC-CNN (V) 0.803 0.803 0.797 0.800 

SC-CNN (I) 0.670 0.618 0.668 0.610 

SC-CNN (f) 0.650 0.598 0.647 0.592 

Multi 
channel 

PCF-CNN 0.804 0.833 0.831 0.818 

SCF-CNN 0.854 0.841 0.845 0.836 

HPCF-CNN 0.874 0.824 0.840 0.827 

HSCF-CNN 0.897 0.856 0.861 0.857 

Partially inspected 

Traditional 

DT 0.624 0.744 0.713 0.721 

MLR 0.848 0.820 0.765 0.773 

FFNN 0.824 0.833 0.749 0.769 

MCSVM 0.859 0.798 0.772 0.779 

Single 

channel 

SC-CNN (V) 0.867 0.863 0.803 0.824 

SC-CNN (I) 0.726 0.783 0.731 0.715 

SC-CNN (f) 0.700 0.769 0.687 0.695 

Multi 

channel 

PCF-CNN 0.909 0.884 0.839 0.855 

SCF-CNN 0.876 0.863 0.793 0.816 

HPCF-CNN 0.915 0.898 0.854 0.871 

HSCF-CNN 0.912 0.865 0.812 0.827 

Fully inspected 

Traditional 

DT 0.690 0.785 0.793 0.788 

MLR 0.856 0.821 0.807 0.808 

FFNN 0.838 0.836 0.830 0.832 

MCSVM 0.909 0.837 0.834 0.828 

Single 

channel 

SC-CNN (V) 0.906 0.871 0.865 0.861 

SC-CNN (I) 0.682 0.795 0.766 0.753 

SC-CNN (f) 0.696 0.774 0.714 0.731 

Multi 

channel 

PCF-CNN 0.929 0.901 0.879 0.888 

SCF-CNN 0.922 0.885 0.843 0.858 

HPCF-CNN 0.940 0.911 0.891 0.900 

HSCF-CNN 0.938 0.894 0.878 0.885 

all models in the cases of the other two event logs. Another 

important observation is that there is a lift in classification 

performance as more curated event logs are used. This is due to 

(1) the manual handpicking of event-related segments by the 

domain expert, and (2) the additional time and effort dedicated 

to further handpick normal operation segments in the fully 

inspected event log. The latter leads to additional performance 

improvement since some of the events may span parts of their 

preceding 3-minute periods; which is the case with the partially 

inspected event log. 

To further inspect how the performance of the best- 

performing multi-channel CNNs translates into specific 

numbers of detected events, their corresponding confusion 

matrices were visualized for each event log and presented in 

Fig. 4. First, the improvements introduced by the domain-based 

inspection of abnormal events are evident. Once abnormal 

events are partially inspected by the domain expert, additional 

21-33 normal events are correctly classified and additional ~19 

events are correctly detected as line faults. However, there is a 

considerable number of 16-25 misclassified frequency events 

which is most likely due to the labelling of the time period 

preceding each event as ‘normal operation’. Also, recall that the 

partially inspected log required 3 times more effort for 

preparation compared to the initial, rapidly refined event log 

(refer to Table II). In case 25% more time is devoted to fully 

inspect normal operation measurements, additional 9-25 line 

and 9-14 frequency events are captured. Finally, this also leads 

to an increase in detected line (and normal) events without 

compromising the detection of normal/frequency events. 

C.  Gradual Effect of Event Labeling on Event Classification 

The outcomes of the experiment discussed in Section V-B 

revealed that HPCF-CNN, when trained using the fully 

inspected labels, outperforms the rest of the classification 

models, across all three labeling scenarios. The event labeling 

process is undoubtedly a time-consuming process and thus a 

question that arises is whether HPCF-CNN could have obtained 

similar performance had it been trained on a smaller fraction of 

fully inspected labels. Therefore, in the following experiment, 

the effect of event labeling on the classification performance of 

HPCF-CNN was analyzed in more detail. Initially, all segments 

were labeled using the rapidly refined event log. The rapidly 

refined labels were thereafter gradually replaced by fully 

inspected labels, adding one month of fully inspected labels at 

a time. For a given number of months 𝑛, the rapidly refined 

labels of events occurring during 𝑛 randomly chosen months 

were replaced by their respective fully inspected labels. For 

each 𝑛 = 1, … ,12, this random replacement of labels was 

repeated 10 times. In each run, the performance of HPCF-CNN 

was assessed in case (1) the rapidly refined labels were replaced 

by fully inspected labels, and (2) if only the fully inspected 

labels were kept. The average testing F1-scores over all runs, 

along with their standard deviations, are presented in Fig. 5.  

An initial observation from Fig. 5 is that the event classification 

performance clearly improves as larger amounts of fully 

inspected segments are considered. This holds in both cases 

when the fully inspected segments are used alone and in 

addition to the rapidly refined segments. In the latter case, four 

distinctive regions (depicted using different colors in Fig. 5) can 

be observed based on the largest performance gaps. In the first 

(purple) region, there is already a sudden lift in performance 

even when only 2 months of rapidly refined segments are 

replaced by fully inspected segments. After that the 

performance stabilizes up until 5 months of fully inspected data 

are replaced (red region in Fig. 5). This process takes from 15.7 

to 28 days of inspection time i) depending on the number of 

months of data being inspected and ii) considering that the 

domain expert devoted approximately 3 hours per day for 

inspection (recall Table II).  

 
Fig. 4.  Non-normalized confusion matrices of the best-performing standard 

(top row) and hierarchical (bottom row) multi-channel CNNs, under each 

event labeling scenario.  
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Subsequently, there is a lift in performance once 6 months of 

segments are replaced by expert-inspected segments and no 

significant change in performance was observed for 7 months 

(yellow region in Fig. 5). Thus, assuming that 5 months of data 

have already been fully inspected, achieving the performance 

lift to enter the yellow region requires an inspection of only one 

more month of data. This translates into 12% more inspection 

time relative to the time devoted to inspecting 5 months of data. 

 The last considerable gap in performance occurs when the 

coverage of fully inspected data is increased to 8 months and, 

from this point onward, HPCF-CNN’s performance is 

considerably similar to that of the best-performing HPCF-CNN 

trained on all 12 months of fully inspected data (green region in 

Fig. 5). Fully inspecting the events for such a time period of 

data required the expert to devote between 2 and 2.5 months; 

i.e. from ~20% up to ~60% more inspection time than the time 

needed to achieve the yellow-region performance (with 6 

months of fully inspected data). 

In summary, if the domain expert’s time is extremely limited, 

fully inspecting at least two months of data is suggested. In case 

of much greater expert’s availability, it is suggested that the 

domain expert devotes at least ~2 months for inspection which 

translates to 8 months of fully inspected data. In such a case, 

performance similar to that of the best-performing HPCF-CNN 

(trained on all 12 months of fully inspected data) may be 

achieved. A tradeoff between inspection time and performance 

would be to consider ≥ 6 months of data, requiring around 6 

weeks of domain expert’s time to inspect. Finally, if more than 

4 months of data are considered for inspection, using solely the 

fully inspected segments to train HPCF-CNN appears to be a 

consistently better choice than using them in addition to rapidly 

refined segments for the remaining months. This indicates that 

once 4 months of data are inspected, the quality of the fully 

inspected labels is already evident. On the contrary, the rapidly 

refined labels seem to be unreliable given that they lead to 

performance deterioration once used in addition to the fully 

inspected labels. 

D.  Domain Expertise Assessment 

It is clear that the observations on HPCF-CNN’s 

performance made in the afore discussed experiments hold 

assuming a certain satisfactory domain expertise. Hence, it is of 

considerable importance to investigate to what extent such 

observations would hold in case a less-experienced domain 

expert inspects the data. To quantitatively inspect the impact 

that a supposedly less experienced domain expert would have, 

lower degrees of expertise were simulated by considering 

different fractions of segments and randomly flipping their 

otherwise fully inspected labels. For each considered fraction, 

the experiment was repeated 10 times. The resulting 

performance of HPCF-CNN is presented in Fig. 6. First, it can 

be observed that the classification performance clearly drops 

with the increase of the flipping fraction. Larger fractions also 

enforce more ‘randomness’ in selecting which labels will be 

flipped, thus leading to larger performance fluctuations 

(reflected in the standard deviations of the average F1-scores). 

Even when 3% or 5% of the labels are flipped, the average F1-

scores are quite similar to that of the HPCF-CNN utilizing the 

fully inspected labels. Significant drops in performance occur 

after flipping more than 5% of the labels. This observation 

suggests that similar performance may be achieved with the 

(supposed) expert as long as the expert is experienced enough 

not to mislabel more than 5% of the data. 

E.  Case Study: Event Detection 

Considering that HPCF-CNN was observed as the model 

obtaining the best overall classification performance, its event 

detection performance was also inspected for each of the three 

event classes individually. The classification metrics were 

measured in a one-vs-rest manner and presented in Fig. 7. It can 

be observed that the precision is nearly consistent across all 

three classes which makes HPCF-CNN also a stable event 

detector although in this study it was leveraged for event 

 
Fig. 7. Classification performance of HPCF-CNN w.r.t. each class individually. 

 
Fig. 5.  Effect of the amount of fully inspected event labels on HPCF-CNN’s 
event classification performance, when used alone (orange line) or in addition 

to the rapidly refined labels (blue line). 

 
Fig. 6.  Event classification performance for different fractions of flipped labels. 
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classification. The largest lifts, on the other hand, are obtained 

w.r.t. recall. The normal operation segments can be easily 

detected, followed by fundamental frequency events which 

seem less challenging to detect than line faults. Intuitively, this 

is most likely due to the system-wide nature of frequency events 

as opposed to the locality of line faults. 

VI.  CONCLUSION 

This study leverages several CNN model variants for 

detecting and further characterizing local and system-wide 

events. To assess their effectiveness, extensive experiments 

were conducted on two years’ worth of PMU measurements 

from the Western Interconnection of the U.S. power grid, under 

three different domain-expert-assisted labeling scenarios. The 

main findings are summarized as follows: 

• CNNs outperform traditional classification models 

regardless of the quality of the available event labels. CNNs 

utilizing multiple PMU-measured quantities improve further 

upon single-quantity alternatives. Multi-channel hierarchical 

CNNs outperform all alternatives considered. 

• HCNNs’ classification performances gradually improve as 

more measurement data is being inspected by a domain 

expert. Curating event logs leads to an increase in detected 

line faults, while maintaining a similar number of detected 

frequency events. 

• If the domain expert’s time is extremely limited, labeling at 

least 2 months of data is suggested. In case of greater 

availability, expert-inspected labels for at least ~8 months are 

needed to achieve satisfactory performance. 

• In most cases, using smaller fractions of expert-inspected 

labels alone yields greater event classification performance 

than using them in addition to labels that were not fully 

inspected by a domain expert. 

• Performance similar to that of the best-performing HCNN 

(based on entirely domain-driven labeling) may be achieved 

with a less experienced event curator as long as < 5% of 

event labels (used for model training) are mislabeled. 

• Finally, normal operation segments were least challenging to 

detect, followed by frequency events which seem to be easier 

to detect than line faults, thus reflecting their system-wide 

nature as opposed to the locality of line faults. 

VII.  DISCLAIMER 

This report was prepared as an account of work sponsored 

by an agency of the United States Government. Neither the 

United States Government nor any agency thereof, nor any of 

their employees, makes any warranty, express or implied, or 

assumes any legal liability or responsibility for the accuracy, 

completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would 

not infringe privately owned rights. Reference herein to any 

specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise does not necessarily 

constitute or imply its endorsement, recommendation, or 

favoring by the United States Government or any agency 

thereof. The views and opinions of authors expressed herein do 

not necessarily state or reflect those of the United States 

Government or any agency thereof.  
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