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Abstract—Various types of oscillations could occur in the 
power grid from time to time. Most of them are harmless, while 
some could significantly impact the reliable power system 
operations. With increased penetration of renewable energy 
sources and the general transition to more complex power 
system operation comes the need for automated and accurate 
oscillation detection and classification methods. Such methods 
have been extensively studied in the past. Still, most of the 
earlier work was done for situational awareness purposes based 
primarily on simulated waveforms from synthetic power system 
models. This paper presents the results of an oscillation event 
detection method using machine learning algorithms trained on 
features extracted by Prony analysis from field-recorded PMU 
data. The unique experience of working with field-recorded 
historical synchrophasor data obtained from 38 PMUs located 
in the Western Interconnection of the US is shared. Four 
machine learning oscillation detection and classification models 
are trained using the results of Prony analysis as input features. 
The CatBoost classifier outperforms alternatives achieving 
76.86% accuracy. An analysis of the data and related labels 
reveals several aspects of the event labeling that may have 
hindered the performance of the investigated detection and 
classification techniques. In the end, we suggest future event 
labeling approaches that might help avoid the challenges and 
limitations of current PMU recording practices. 

Keywords—oscillation, PMU, event detection, Prony, modal 
analysis   

I. INTRODUCTION  
Oscillations occur in the power grid for numerous reasons, 

including equipment failure, inadequate generator control 
tuning, transient response to faults, and power imbalances. 
Such oscillations can be categorized into two main categories: 
natural and forced, and within these categories, they are 
further split by the range of frequency. Natural oscillations 
occur in the power system locally and on the inter-area scale. 
As long as they are well-damped, these oscillations are 
manageable. When oscillations become poorly damped, they 
threaten the system stability and can cause damage to 
equipment, and might escalate to blackouts eventually. Even 
more dangerous are forced oscillations driven by abnormal 
conditions and may be close in frequency to natural system 
oscillation modes [1]. A major blackout in the US Western 
Interconnection occurred on August 10, 1996, due to forced 
oscillations interacting with a weakly damped system mode 
[2]. Consequently, detection and mitigation of oscillation 
events remain one of the power system operation and control 
challenges. 

Oscillations can be defined by frequency mode, amplitude, 
and damping ratio. Oscillations of frequencies between 5 Hz 
and 50 Hz are generally categorized as subsynchronous, while 
oscillations under 5 Hz are categorized as low-frequency 
oscillations (LFO) [1]. Renewable resources can create low 
frequencies in the range of 10-15Hz. Mitigation and control 

devices exist for these different types, such as power system 
stabilizers for LFOs and subsynchronous damping controllers 
for subsynchronous oscillations [3]. Over the years, oscillation 
events have been extensively studied using ambient and 
ringdown analysis methods. Ambient methods, such as those 
proposed in [4]-[7], assume a quasi-steady state of the power 
system. Ringdown analysis methods, such as those 
implemented in [8]-[11], use the recorded data after an 
operation disturbance. The North American Electric 
Reliability Corporation (NERC) adopted ambient methods, 
including Yule-Walker, Least Squares methods, Frequency 
Domain Decomposition, and Stochastic Subspace 
Identification. Ringdown approaches mentioned by NERC 
include the Prony method, Eigensystem Realization 
Algorithm, Matrix Pencil, Variable Projection, Hankel Total 
Least Squares, and several frequency-domain methods [2].  

The utility of these methods has been proven using either 
simulations or field recordings available for past events. These 
methods, especially ringdown methods such as Prony, 
perform best in the time window following a system event. 
With large amounts of data being collected today by phasor 
measurement units (PMUs), the detection of oscillations 
events and their locations and types is still a compelling area 
of research. Specifically, the introduction of machine learning 
to this field is most intriguing. Several variations of neural 
networks have been studied for such an application, including 
a novel neural network mentioned in [12] and a convolution 
neural network-based algorithm discussed in [13]. A 
significant challenge is the scarceness of oscillation events 
resulting in a lack of instances of such events to train these 
machine learning models. A transfer learning-based solution 
addressing this challenge was proposed in [14]. 

The PMU data used in our study are recorded in the 
Western Interconnection of the US. They have large amounts 
of missing data points, duplicated data, and outliers [15], 
which creates data quality challenges. Because it is also 
anonymized by eliminating PMU location and system 
topology, the option of using any power system model-based 
detection algorithm is infeasible. Furthermore, the event log 
provided with the data lacks some valuable details about the 
oscillation events, such as type or frequency.  

Our contribution is the design of an oscillation data model 
that can detect and classify oscillation events by utilizing the 
basic PMU data features identified by Prony analysis. We 
augment the classic Prony method with a machine learning 
algorithm called CatBoost, making the detection more 
adaptive than tunning detection thresholds based on power 
system model simulations. In addition, based on our first-hand 
experience working with field-recorded historical PMU data, 
we offer various data labeling and feature extraction 
recommendations that could benefit researchers and engineers 
applying machine learning algorithms to improve wide-area 
monitoring and real-time operations based on PMU data. 

This material is supported by the Department of Energy under Award 
Number DE-OE0000913.  
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The rest of the paper is organized as follows. Section II 
discusses the problem background, including the challenges 
presented by the data used in this study. Section III describes 
the methodology involved in developing and testing the 
classifier models. Section IV presents the results. Section V is 
a discussion of the observed algorithm performance and some 
possible explanations of the unexpected outcomes, followed 
by Conclusions and References. 

II. BACKGROUND 

A. The US Western Interconnection 
This study utilizes PMU data that has been recorded in the 

US Western Interconnection. The Western Interconnection 
has been extensively studied in the literature and by NERC 
and is known to have unique types of oscillations [15]. As 
previously mentioned, the interaction between forced and 
natural oscillations may lead to a resonance caused by the 
initial localized forced oscillation, where the amplitude of 
oscillations grows and can be seen across the system. The 
source of forced oscillations due to resonance is hazardous 
because it can cause generator protection in different parts of 
the system to trip in response [1]. Being aware of the 
frequencies of these modes by automatically detecting and 
classifying them is essential for the proper operator’s response 
in case of a forced oscillation near these modes.   

According to the Western Electricity Coordinating 
Council (WECC), the five inter-area modes are listed along 
with their corresponding nominal frequency and damping 
ratios in Table I [16]. While the two North-South modes are 
the most observed and well-studied, due to the availability of 
PMU field recordings, the lack of related field recordings for 
the other three modes has resulted in some unknown 
properties like their damping ratios during normal operation.  

TABLE I.  WESTERN INTERCONNECTION INTER-AREA MODES 

Mode Name 
Mode Properties 

Nominal Frequency Damping Ratio 

North-South Mode A 0.25 Hz 10% to 15% 

North-South Mode B 0.34 Hz to 0.4 Hz 5% to 10% 

East-West Mode A 0.45 Hz Unknown 
British Columbia “BC” 
(North-West) 0.6 Hz Unknown 

Montana (North-West) 0.8 Hz Unknown 

B. PMU Data 
Voltage, current, and frequency data are collected by 43 

PMUs in the Western Interconnection of the US over two 
years (2016-2017). These PMUs report phasor measurements 
of positive sequence and three-phase voltage and current as 
well as frequency and rate of change of frequency (ROCOF) 
at the rate of 30 or 60 frames/second (fps). Accompanying the 
data is an event log containing the start and end time of events, 
event type, cause, and descriptor (label). Out of 4,854 events, 
only 100 events are labeled as oscillation events over two 
years. These events have a wide range of durations lasting 
from 2 minutes to 9 hours. Further descriptors such as cause, 
oscillation type (LFO or subsynchronous; local or inter-area), 
oscillation mode, amplitude, or damping ratio are not 
provided. We also have no information about the locations of 
the PMUs or the network topology, which added to the 
ambiguity of the problem. Therefore, the data must be visually 
inspected by a domain expert to determine or speculate the 

nature of these oscillations and decide on the best course of 
action for developing an automated event detection tool.   

Statistical analysis of the data reveals several data quality 
issues that could hinder any event detection algorithm, as 
noted in the earlier work [15],[17].  

• Missing data: PMUs are missing on average 0.69% to 
30.01% of their positive sequence voltage magnitude 
and frequency measurements.  

• Data duplicates: 19 PMUs report duplicate data points 
that reached up to 106 points on some days. 

• Outliers: all PMUs are found to have outliers, but 6 
PMUs had an excessive number of these outliers.  

• Flat 60 Hz: four PMUs report flat 60 Hz frequency for 
extended periods of time.  

• Inconsistent voltage level: four PMUs report 
inconsistent voltage levels. 

Due to the aforementioned data quality issues, data from 
five PMUs are excluded from further studies. This decision is 
critical to avoiding the complications that might arise from 
inconsistent voltage and frequency measurements, which are 
pivotal to analyzing oscillation events. Accordingly, the final 
dataset comprises the measurements from the remaining 38 
PMUs. 

C. Prony Analysis for Feature Selection 
The Prony method is chosen to build the set of features 

used by a machine learning algorithm in this study. Although 
we have not contributed to the computation method of Prony, 
which is widely studied, our approach of combining it with 
machine learning approaches is rarely found in the literature. 
The main reason behind our decision is to create a feature set 
that would hold information about the oscillation mode 
frequency, amplitude, and damping factor. The Prony method 
starts with an input, a data series that can be fitted into an 
exponential model as in (1). For an input vector x containing 
N samples, 𝐱𝐱�𝑘𝑘 can be estimated as follows: 

𝐱𝐱�𝑘𝑘 =  ∑ 𝐴𝐴𝑖𝑖𝑒𝑒(𝛼𝛼𝑖𝑖+𝑗𝑗2𝜋𝜋𝑓𝑓𝑖𝑖)(𝑘𝑘−1)𝑇𝑇+𝑗𝑗𝜙𝜙𝑖𝑖𝑚𝑚
𝑖𝑖=1 =  ∑ ℎ𝑖𝑖𝑧𝑧𝑖𝑖𝑘𝑘−1𝑚𝑚

𝑖𝑖=1  (1) 

where 𝐴𝐴𝑖𝑖, 𝛼𝛼𝑖𝑖, 𝑓𝑓𝑖𝑖, 𝜙𝜙𝑖𝑖 are amplitude, damping ratio, frequency, 
and initial phase of each mode i, respectively. T is the 
sampling time window in seconds. ℎ𝑖𝑖 and 𝑧𝑧𝑖𝑖 are the residue 
and polynomial root of the i-th mode, respectively.  

The solution involves finding the least-squares 
approximation of these components. The problem can be 
rewritten in matrix form as in (2).  

 �

𝑥𝑥𝑚𝑚
𝑥𝑥𝑚𝑚+1
⋮

𝑥𝑥𝑁𝑁−1

� =  �

𝑥𝑥𝑚𝑚−1 𝑥𝑥𝑚𝑚−1 ⋯ 𝑥𝑥0
𝑥𝑥𝑚𝑚 𝑥𝑥𝑚𝑚−1 … 𝑥𝑥1
⋮ ⋮ ⋱ ⋮

𝑥𝑥𝑁𝑁−2 𝑥𝑥𝑁𝑁−3 ⋯ 𝑥𝑥𝑁𝑁−𝑚𝑚−1

�  �

𝑎𝑎1
𝑎𝑎2
⋮
𝑎𝑎𝑚𝑚

� (2) 

When (2) is rewritten as x = X a, a least-squares estimate 
of a can be obtained. Next, the roots of the characteristic 
polynomial zi can be found using the values of a computed in 
(2). The values of hi can also be found using another least-
squares approximation [8]. Finally, the four main components 
of the Prony approximation can be found from z and h, as 
shown in (3). 
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𝐴𝐴𝑖𝑖 = |ℎ𝑖𝑖|,𝛼𝛼𝑖𝑖 = ln |𝑧𝑧𝑖𝑖|
𝑇𝑇

, 𝑓𝑓𝑖𝑖 = 1
2𝜋𝜋𝜋𝜋

tan−1 ℑ{𝑧𝑧𝑖𝑖}
ℜ{𝑧𝑧𝑖𝑖}

,𝜙𝜙𝑖𝑖 = tan−1 ℑ{ℎ𝑖𝑖}
ℜ{ℎ𝑖𝑖}

 (3) 

III. METHODOLOGY 

A. Feature Extraction 
Twelve features are extracted for every PMU in the dataset 

after removing the PMUs deemed “bad PMUs” due to the data 
quality issues mentioned in Section II.B. Decisions such as 
reporting rate and order of Prony are chosen according to 
recommendations found in the literature in similar studies. 
The following steps are followed to extract these features: 

1) Data retrieval: Data is retrieved from its initial 
storage form, the Apache Parquet format [18]. All data 
processing and event detection code is developed using 
Apache Spark [19] and Python [20]. 

2) Data sampling: Data is sampled using a sliding 
window of 10 seconds (T = 10s). Because the PMUs have two 
reporting rates, 30 and 60 fps, and computations are slowed 
down by data quantity. The data are downsampled so that 
every PMU would be reporting ten fps. This downsampling 
results in a total of 100 samples for each time window.  

3) Data window: Every oscillation event is divided into 
time windows of 10 seconds. For normal operation time 
windows, 10-second time windows are obtained from every 
hour over two years, excluding the time ranges that 
correspond to the labeled events. 

4) Computation of Prony parameters: With the order 
of Prony set to 20 modes, the four Prony parameters 
described in (6) are computed for each PMU at every time 
window. This setup results in 80 features per PMU per time 
window. 

5) Feature selection: The modes computed by Prony 
are reordered by descending amplitude. Ignoring the first 
mode, which is the nominal frequency (60 Hz), the three 
modes of highest amplitude are selected. The four Prony 
parameters of these three modes are then saved as the feature 
set for the corresponding PMU. Twelve features are extracted 
for every PMU of the 38 PMUs. In total, the feature vector 
for every time window is composed of 456 features. An 
attempt is made to aggregate these features for all PMUs 
using a data fusion method. However, the resulting event 
detection accuracy is very low, suggesting that such an 
approach might be causing a loss of important information 
within the individual PMUs’ Prony components. 

B. Training the Classifier Models 
Several machine learning models are used for the 

experiment. They are all designed using the scikit-learn library 
in Python [21], except for CatBoost, which has its own library 
[22]. Even though attempts have been made using other 
classifiers, our best-performing classifiers are Multi-Layer 
Perceptron (MLP), AdaBoost (AB), Random Forest (RF), and 
CatBoost (CB).  

As mentioned in Section II.B, a hundred events labeled as 
oscillation events varied in terms of time length from 2 
minutes to 9 hours. Therefore, the concept of a sliding window 
is used to get equal time windows of the events and to account 
for the nonlinearity that arises during more extended events. It 

has been reported that an oscillation event might evolve from 
one mode to another over time [23]. Such time windows are 
all labeled “1”, indicating an event.  

A critical step in model design is to split the training and 
test data temporally. The reason for the temporal split, as 
opposed to a random split, is that system modes overlap for 
the time windows of the same event and normal operation 
windows that are close in time. This similarity means that a 
classifier might have the features vectors overlap for time 
windows that correspond to an event in the training and test 
datasets, which could overestimate the performance. 
Consequently, the data was split into temporally disjoint 
subsets so that the data from the first year (2016) is used for 
training, and the data from the second year (2017) is used for 
testing. In another experiment, the roles are reversed, where 
2017 is used to train the models, and 2016 is used to test them.  

IV. RESULTS 
The results obtained by the four classifiers are summarized 

in Table II (training in 2016 and testing in 2017) and Table III 
(training in 2017 and testing in 2016). The classifiers’ 
performance is evaluated using well-established metrics, 
including Area Under the Receiver Operating Curve (AUC), 
Area Under the Precision Recall Curve (AUPRC), Precision, 
Recall, and F-1 score [24]. In the tables, the classifiers are 
abbreviated as follows: multi-layer perceptron (MLP), 
AdaBoost (AB), Random Forest (RF), and CatBoost (CB). 

The CatBoost classifier performs best by all the metrics. A 
significant improvement in performance from a 64.46% to a 
76.86% accuracy is achieved when the data from 2017 is used 
to train the classifier models instead of the data from 2016. 
This result is interesting considering that the number of 
oscillations recorded in 2017 (36) is less than the number of 
oscillation events recorded in 2016 (64). So, the nature of the 
features pertaining to the events rather than the amount of 
training data in these separate years seems to matter.  

TABLE II.  PERFORMANCE OF DIFFERENT CLASSIFIERS WHEN TRAINED 
IN 2016 AND TESTED IN 2017  

Classifier Performance Metrics 
AUC AUPRC Precision Recall F1-score 

MLP 0.5561 0.4866 0.5451 0.5333 0.5391 
AB 0.4932 0.4926 0.4862 0.4949 0.4905 
RF 0.4753 0.4973 0.4139 0.4763 0.4429 
CB 0.6446 0.5891 0.5825 0.5589 0.5705 

TABLE III.  PERFORMANCE OF DIFFERENT CLASSIFIERS WHEN TRAINED 
IN 2017 AND TESTED IN 2016  

Classifier Performance Metrics 
AUC AUPRC Precision Recall F1-score 

MLP 0.5632 0.8668 0.5260 0.5442 0.5349 
AB 0.7343 0.9418 0.5903 0.6500 0.6187 
RF 0.7040 0.9235 0.6247 0.7170 0.6677 
CB 0.7686 0.9229 0.5844 0.6532 0.6169 

V. DISCUSSION 
The results from Section IV inspire several questions: 

1) Why might using data from the year 2017 to train the 
models be better than using data from the year 2016? 

2) Why is the maximum accuracy obtained by any of the 
classifiers in any experimental setup using field data 
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limited to lower than 80%, which is generally not a 
satisfactory level of performance? 

To address these questions, this study is first expanded to 
compare the performance of the same classifiers when each 
labeled oscillation event is isolated as a separate instance for 
testing. In addition, oscillation events are also studied in depth 
by other team members using different tools. As a result, more 
information about these events than what the labels conveyed 
is revealed, and other oscillations not included in the event log 
are discovered. 

A. Performance Comparison of Individual Oscillation 
Events  
All four classifiers perform better when the data used to 

train them is obtained from the year 2017 rather than 2016, 
and the testing is done in 2016. The most intuitive reason that 
comes to mind first is that the year 2017 might contain more 
data than the models can learn. However, this is not true since 
2017 only has 36 oscillation events, compared to the 64 events 
found in 2016. To obtain more details about the behavior of 
these classifiers when encountering individual oscillation 
events, each event is isolated temporally and tested separately. 
One hundred small experiments are performed to achieve this 
analysis: 

• For events 1 to 64: training data is made up of all 36 
events in 2017 and a proportional number of normal 
operation time windows. Each event is then used as a 
separate test dataset, along with a balanced number of 
normal-operation time windows. 

• For events 65 to 100: training data is made up of all 64 
events in 2016 and a proportional number of normal-
operation time windows. Each event is then used as a 
separate test dataset, along with a balanced number of 
normal-operation time windows. 

The results of these experiments are illustrated in Fig. 1. 
The performance of CatBoost is chosen for this experiment 
since it is the classifier that performs best overall. It is evident 
in Fig. 1 that CatBoost has high accuracy (AUC) when tested 
on events in 2016 (1 to 64). The left-hand side of the graph 
exhibits values of AUC that are close to 1.0 except for five 
outliers. Wider dispersion of AUC values is seen on the right-
hand side of the graph; however, the model’s accuracy when 
testing on each event drops for much of the remaining 36 
events. This behavior might suggest that the data contained in 
the events captured in 2017 is not as well-correlated or well-
defined as the data captured in 2016.  

B. Study of Feature Randomness 
To test this theory, a randomness study is performed on the 

features extracted for events in 2016 versus those extracted 

from 2017. In this study, the “Runs test for randomness” is 
used to evaluate the degree of randomness in each feature over 
each year separately [25]. The runs test is a statistical approach 
for determining whether a dataset was created through a 
random process. The test statistic computed by the runs test is 
the z-value [26]. The test is a typical two-sided statistical test 
in which the z-value obtained for each feature can be 
compared against a critical value. The critical value selected 
for a 99% level of confidence is 2.576. Based on this test: 

• The year 2016 has 99 random features out of 456 
(21.7%). 

• The year 2017 has 295 random features out of 456 
(64.7%). 

This considerable difference in the randomness content of 
the extracted features in these two different years might 
explain the disproportionate comparison in performance of the 
models in the two years. Because no pattern is found in the 
randomness of the features, none of the features are excluded 
from the experiment. Removing only those features identified 
by the runs test did not lead to improved accuracy, either. 

C. Other analysis methods 
Separate studies are explicitly performed on the same 

oscillation events using other analysis methods. The 
oscillation events included in the event log are visually 
inspected by observing the positive sequence voltage angle 
difference. Fast Fourier Transform (FFT) and Matrix Pencil 
are cross-validated as event detection methods. In this 
experiment, which is performed early on in the study, it is 
assumed that these oscillations are all of low frequency. 
Therefore, the captured frequency modes are limited to the 
range of 0 – 2 Hz. These three combined methods can identify 
86 out of the 100 events in the event log. The damping ratios 
of the modes of these events range between 20% and 40%, 
which would be considered sufficient damping in the normal 
operation scenario. This finding drives the decision regarding 
feature selection described in Section III.A.4). The modes are 
kept as features based on their magnitudes rather than their 
frequencies. This decision allows the algorithm to identify 
both subsynchronous and low-frequency oscillation events.  

Even more interesting is that these methods can identify 
oscillation events that are not included in the event log. Using 
real-power data, relative angle difference data, and frequency 
data, 79, 224, and 755 oscillations are discovered even though 
they are not labeled. These events are only within the days that 
already have a labeled oscillation event, suggesting that a 
much larger number of events could be found over the entire 
dataset. The main hindrance in this kind of study is the lack of 
knowledge of the criteria used to label oscillation events in the 
original event log. The 100 events identified by the event label 
are not accompanied by any further information about the 
cause or description of the events. We do not know whether 
only low-frequency events are labeled “oscillation” or if 
subsynchronous oscillations also qualify for this label. These 
ambiguities in the provided data labels can further explain the 
limited performance of our classifiers. 

VI. CONCLUSION 
The following may be inferred from our study: 

• Using Prony method parameters extracted from the 
PMU data as features to train and test machine learning 
classifiers might lead to high randomness in the feature 

 
Fig. 1. Performance of CatBoost on individual events. 
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content, as seen in the data extracted from the second 
year of the data we used (2017). 

• It is crucial to include further descriptors for oscillation 
events in event labels like type (low frequency or 
subsynchronous), dominant frequency mode, and 
damping ratio. It will also be helpful to facilitate the 
event mitigation if events are labeled as local or inter-
area to help find the source of oscillations. 

• Criteria for what qualifies as an “oscillation” event 
should be more precise. In the inspected low-frequency 
oscillations (0 – 2 Hz), the damping ratios of the events 
in the log ranged mainly between 20% to 40%, even 
though the literature suggests that oscillations may be 
of concern when their damping ratios drop below 10%.  

DISCLAIMER  
This report was prepared as an account of work sponsored 

by an agency of the United States Government. Neither the 
United States Government nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, 
product, or process disclosed or represented that its use would 
not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States 
Government or any agency thereof. The views and opinions 
of the authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency 
thereof. 
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