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ABSTRACT Arrhenius equations with Weibull distribution have been broadly deployed to quantify the loss
of life and probability of failure of power transformers. This model is highly nonlinear, and this non-linearity
makes it challenging to use this model for grid management and optimization. In this study, equations
are linearized using Taylor series expansion to provide a linear formulation for transformer loss of life
and probability of failure as a function of ambient temperature and transformer loading. The proposed
formulation allows transformer constraints to be incorporated in grid management applications within
conventional optimization approaches, such as linear programming, and decreases the calculation burden
caused by nonlinearity.

INDEX TERMS Arrhenius model, Weibull distribution, electric transformers, linearization.

I. INTRODUCTION
Electric power distribution transformers are significant ele-
ments of power systems, and their operation plays an impor-
tant role in the reliability and resilience of the system. Hence,
estimating the stress caused by their operating conditions is
important for mitigating their loss of life and the probability
of failure.

Life of the power transformers mainly depends on the life
of their cellulose paper insulation which deteriorates with
thermal stress, moisture, and oxygen. Oxygen and moisture
can be managed to remain minimal; however, temperature is
not as manageable [1]. The life of the transformer is governed
by its thermal behavior [2]. Because the temperature in a
transformer is distributed non-linearly, the insulation exposed
to the hottest spot temperature experiences the fastest degra-
dation and would be the most likely to fail [3]. Hence, using
the hottest spot temperature in thermal models provides the
best estimation for transformer life.

A. MOTIVATION
Thermal stress is one of the main reasons for transformers’
loss of life and failure [4]. The temperature of transformer
windings and insulation systems, oil for example, is a major
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factor effecting transformer loading capability [5]. Quantify-
ing transformers’ loss of life and probability of failure as a
function of loading may be then used for grid planning and
operation studies.

For planning purposes, the calculation burden may not be
as important, but for operational applications, it is important
to reduce the calculation burden as much as possible due to
the limited time for assessing the situation and making an
appropriate decision.

For both planning and operational purposes, transformer
thermal stress assessment may be utilized in solving an opti-
mization problem. There are simple and effective algorithms
for solving large scale linear optimization problems using a
low-cost processor. However, if the formulation is non-linear,
finding an optimal solution may become a challenging and
computationally expensive task. Providing a linear formu-
lation for transformer loss of life and probability of failure
enables the solution of planning and operational optimization
problems using standard approaches and processors.

B. PRIOR RESEARCH
Quantifying the loss of life and the probability of failure for
transformers has been a subject of extensive research. In one
of the first publications in this area, historical failure data
were used to calculate the probability distribution function
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using statistical techniques [6]. Because sufficient failure data
for a transformer may not be available and the lifetime of
the transformer is relatively long, studies have attempted to
provide a more accurate estimation of the parameters of the
distribution functions [7], [8].

Several distribution functions have been studied for the
purpose of transformer life evaluation. Some have used nor-
mal and log-normal distributions [7], [9], while another used
Perk’s hazard function [10]. Yet another paper used gen-
eralized exponential distribution [11]. Weibull distribution
has been discussed extensively for this purpose [7], [9],
[12]–[16]. All distributions used in these methods are highly
nonlinear. Arrhenius model is used for life assessment of
various power system components such as transformers [17],
surge arresters [18], [19], electrical insulating materials [20],
and cables [21].

Temperature related chemical changes in the electrical
insulation were discussed in [22] for the first time. The
life of an insulator can be impacted by the surrounding
insulation medium as well [23]. The surrounding medium
for the oil-filled transformers is oil and thermal stress
may cause chemical reactions that lead to release of sev-
eral gases in the transformer oil [24]. These gases can be
analyzed by chromatography and used to detect thermal
stress [25]. Various ratio-based methods are introduced in
several standards including IEEE C57.104-2008 [26], IEC
60599 [27], and ASTM D3612-90 [28] as well as graphical
methods [29], [30]. In addition to the conventional methods,
there have been recent efforts for dissolved gas analysis as
described in [31] and [32].

C. CONTRIBUTION OF THIS PAPER
We adopted the formulation of the Arrhenius model for life
assessment with a Weibull distribution. The linear form of
this model was analytically obtained using Taylor series; the
proposed linear form is used for life evaluation in a Monte
Carlo simulation of 250,000 cases with different loading sce-
narios.We show that the proposed formulation has acceptable
performance compared to the original nonlinear form.

The remainder of this paper is organized as follows.
The formula for calculating the hottest spot temperature
of the transformers is explained in Section II. In Section III,
the Arrhenius model is discussed. Linearization of the loss
of life and probability of failure equations are described in
Sections IV and V, respectively. The validation and con-
clusions are outlined in Sections VI and VII, respectively,
followed by references.

II. HOTTEST SPOT TEMPERATURE
The hottest spot temperature is the main factor in assess-
ing the loss of life and the probability of failure of a
transformer. The deterioration of transformer insulation is
a function of time and temperature [5], [33]. There are
several IEEE standards for calculating the hottest spot tem-
perature [34]. The hottest spot temperature, θH , consists of
three parts: the ambient temperature (θa) in Kelvin, the top

oil temperature rise over ambient temperature (1θTO), and
the conductor temperature rise over the top oil temperature
(1θW ). It is calculated as follows:

θH = θa +1θTO +1θW . (1)

Top oil temperature rise over ambient temperature can be
calculated using (2):

1θTO = 1θTO,rated ·

[
x · R+ 1
R+ 1

]n
, (2)

where1θTO,rated is the transformer’s top oil temperature rise
over the ambient temperature under nominal loading, x is
the ratio of the apparent loading of the transformer to its
nameplate rating, R is the ratio of loss at rated load to no load
loss, and n is the exponential power of loss versus the top oil
temperature rise. We rewrite (2) as

1θTO = 1θTO,rated · [αx + β]n , (3)

where

α =
R

R+ 1
, (4)

β =
1

R+ 1
. (5)

The conductor temperature rise over top oil temperature
can be calculated using (6):

1θW = 1θW ,rated · x2m, (6)

where 1θW ,rated is the conductor temperature rise over the
top oil temperature at the rated load, and m is the exponential
power of the winding loss versus winding gradient.

The equations introduced so far are used for steady-state
calculations. To calculate the transient temperature, the tran-
sient values of the top oil temperature rise over the ambi-
ent temperature and the conductor temperature rise over the
top oil temperature can be calculated using (7) and (8),
respectively:

1θTO= (1θTO,ult−1θTO,ini)
(
1−e

−t
τO

)
+1θTO,ini, (7)

1θW = (1θW ,ult−1θW ,ini)
(
1−e

−t
τW

)
+1θW ,ini, (8)

where ini and ult refer to the steady-state values at the
beginning and end of each time step, respectively. Terms τW
and τTO are the conductor and oil thermal time constants,
respectively, and t is the time passed from the beginning of
the time step. In our study, it is assumed that the time steps are
long enough for the temperatures to reach steady state values
at the end of each time step. Thus, the initial values of each
time step are the ultimate values of the previous time step.

A unit of time can be defined for the time interval of each
temperature evaluation, based on the loading of the trans-
former. Whatever interval is assumed as the unit of time, the
oil and conductor thermal time constants should be adjusted
accordingly. To simplify the problem and to avoid time as
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a variable in the hottest spot temperature, the average tem-
perature rise over a unit time interval is calculated using (9)
and (10):

1θTO (T , x1, x2)

=

∫ T+1t

T
((1θTO,ult−1θTO,ini)

(
1−e

−(t−T )
τO

)
+1θTO,ini)dt,

(9)

1θW (T , x1, x2)

=

∫ T+1t

T
((1θW ,ult−1θW ,ini)

(
1− e

−(t−T )
τW

)
+1θW ,ini)dt.

(10)

where T is the time at the start of the time step. Solving the
integrals in (9) and (10), the temperature rises can be obtained
using (11) and (12):

1θTO (T , x1, x2)

=
(
1θTO,ult −1θTO,ini

) (
1+ τOe

−1
τO − τO

)
+1θTO,ini,

(11)

1θW (T , x1, x2)

=
(
1θW ,ult −1θW ,ini

) (
1+ τW e

−1
τW − τW

)
+1θW ,ini.

(12)

Substituting the initial and ultimate temperatures using (3)
and (6) results in what is shown in (13) and (14):

1θTO (T , x1, x2)

= 1θTO,rated ·
[
γO (αx2 + β)n + (1− γO) (αx1 + β)n

]
,

(13)

1θW (T , x1, x2) = 1θW ,rated
(
x2m2 · γW + (1− γW )x2m1

)
,

(14)

where

γO = 1+ τOe
−1
τO − τO, (15)

γW = 1+ τW e
−1
τW − τO. (16)

Using (1), (13), and (14), the hottest spot temperature is
a function of the loading in the present time step and the
previous time step, as shown in (17).

θH (T , x1, x2) = θa(t)+1θTO(T , x1, x2)+1θW (T , x1, x2).

(17)

III. ARRHENIUS MODEL
The Arrhenius model is a well-known life-stress model when
the acceleration variable is thermal. The Arrhenius reaction
rate equation is

R(θ ) = Ce−
Ea
kBθ , (18)

where R is the reaction rate; that is, the speed of reaction, C
is a nonthermal constant, Ea is the activation energy (eV),

kB is Boltzmann’s constant (eV/K), and θ is the absolute
temperature (K). Life is proportional to the inverse action
rate; thus, λ can be defined as a quantifiable life measure
using (18), as shown in (19):

λ(θ ) = Ae
B
θ , (19)

where A and B are empirical parameters. For the electric
transformer age assessment, the hottest spot temperature is
considered as the temperature in the Arrhenius model [34].
The Arrhenius equation for the transformer life-stress model
is shown in (20):

λ(θH (t, x‘1, x2)) = Ae
B

θH (t,x‘1,x2) . (20)

IV. TRANSFORMER LOSS OF LIFE
The model in Equation (20) can be used along with its value
for normal operating conditions to determine the per-unit life
that the transformer loses in the time step. This is called the
aging acceleration factor (FAA), as shown in (21):

FAA(θH (T , x1, x2)) =
Ae

B
θH ,ref

Ae
B

θH (T ,x1,x2)

= e
B

θH ,ref
−

B
θH (T ,x1,x2) , (21)

where θH ,ref is the reference temperature at which the trans-
former is supposed to operate normally. To simplify (21), the
normal aging part is replaced with a constant D in (22):

FAA(θH (T , x1, x2)) = D · e−
B

θH (T ,x1,x2) . (22)

Now, we attempt to find a linear approximation for the
acceleration factor. The chain rule in Leibniz’s notation is
given in (23):

df (g(x))
dx

=
df (g)
dg
·
dg(x)
dx

. (23)

The two-variable Taylor series expansion for f (x1, x2)
around the point (x∗1 , x

∗

2 ) is shown in (24):

f (x1, x2) = f (x∗1 , x
∗

2 )+ (x1 − x∗1 )
∂f (x∗1 , x

∗

2 )

∂x1

+(x2 − x∗2 )
∂f (x∗1 , x

∗

2 )

∂x2
+ h.o.t. (24)

By removing the higher-order terms (h.o.t.) in
equation (24), the function can be estimated as shown in (25):

f (x1, x2) = f (x∗1 , x
∗

2 )+ (x1 − x∗1 )
∂f (x∗1 , x

∗

2 )

∂x1

+(x2 − x∗2 )
∂f (x∗1 , x

∗

2 )

∂x2
, (25)

where x∗1 and x∗2 are the initial and ultimate loading con-
ditions for the transformer, respectively. Using (22), the
derivative of the acceleration factor with respect to x1
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and x2 can be calculated as shown in (26) and (27),
respectively:

∂FAA(θH (x1, x2))
∂x1

=
∂FAA(θH )
∂θH

·
∂θH (x1, x2)

∂x1
, (26)

∂FAA(θH (x1, x2))
∂x2

=
∂FAA(θH )
∂θH

·
∂θH (x1, x2)

∂x2
. (27)

Using (22), the derivative of the acceleration factor with
respect to the hottest spot temperature can be calculated as
shown in (28):

∂FAA(θH )
∂θH

= D ·
B

θ2H
· e−

B
θH . (28)

Using (13), the derivatives of the top oil temperature rise
over the ambient temperature with respect to x1 and x2 can be
calculated as shown in (29) and (30):

∂θTO

∂x1
= 1θTO,rated · (1− γO) · α · n · (αx1 + β)n−1,

(29)
∂θTO

∂x2
= 1θTO,rated · γO · α · n · (αx2 + β)n−1. (30)

Using (14), the derivatives of the conductor temperature
rise over the top oil temperature with respect to x1 and x2 can
be calculated as shown in (31) and (32):

∂θW

∂x1
= 1θW ,rated · (1− γW ) · 2m · x2m−11 , (31)

∂θW

∂x2
= 1θW ,rated · γW · 2m · x

2m−1
2 . (32)

Using (17), (29), and (31), the derivative of the hottest
spot temperature with respect to x1 is calculated as shown
in (33):

∂θH

∂x1
= 1θTO,rated · (1− γO) · α · n · (αx1 + β)n−1

+1θW ,rated · (1− γW ) · 2m · x2m−11 . (33)

Similarly, using (17), (30), and (32), the derivative of the
hottest spot temperature with respect to x2 is calculated as
shown in (34):

∂θH

∂x2
= 1θTO,rated · γO · α · n · (αx2 + β)n−1

+1θW ,rated · γW · 2m · x
2m−1
2 . (34)

Using (26), (28), and (33), the derivative of the acceleration
factor with respect to x1 is calculated as shown in (35):

∂FAA
∂x1

=

(
1θTO,rated · (1−γO) · α · n · (αx1+β)n−1

+1θW ,rated · (1−γW) · 2m · x
2m−1
1

)
· D ·

B

θ2H
· e−

B
θH .

(35)

Similarly, using (27), (28), and (33), the derivative of the
acceleration factor with respect to x2 is calculated as

shown in (36):

∂FAA
∂x2

=

(
1θTO,rated · γO · α · n · (αx2 + β)n−1

+1θW ,rated · γW · 2m · x
2m−1
2

)
· D ·

B

θ2H
· e−

B
θH .

(36)

Using (25), (35), and (36), and simplifying the notation
θH (x∗1 , x

∗

2 ) to θH , the acceleration factor can be estimated in
linear form for x1 and x2 as shown in (37):

FAA(T , x1, x2)

=D · e−
B
θH

+(x1−x∗1 )
(
1θTO,rated ·(1−γO)·α ·n·(αx∗1+β)

n−1

+1θW ,rated · (1−γW )·2m·(x∗1 )
2m−1

)
·D·

B

θ2H
·e−

B
θH

+(x2 − x∗2 )
(
1θTO,rated · γO · α · n · (αx∗2 + β)

n−1

+1θW ,rated · γW · 2m · (x∗2 )
2m−1

)
· D ·

B

θ2H
· e−

B
θH .

(37)

The remaining question to be addressed is the values of
x∗1 and x∗2 . Equation (37) is a general equation and based
on the study and different operating conditions, it may be
more effective to use the predicted loading values for x∗1
and x∗2 . In addition, for situations in which the loading may
vary significantly, several values of x∗1 and x∗2 can be used in
order to construct a linear approximation. Hence, simulations
described in Section IV explore multiple choices of values of
x∗1 and x∗2 in (37).

V. TRANSFORMER PROBABILITY OF FAILURE
It is suggested in [5] that the Weibull distribution is suitable
for use in the transformer’s probability of failure in its life
span. In addition, as discussed in Section III, the Arrhenius
model is used to model the thermal degradation of the trans-
former’s insulation. Thus, the probability of a thermal-related
failure for a transformer can be quantified using Arrhenius-
Weibull model. The probability density function (PDF) for
two-parameter Weibull distribution is given by (38):

f (t, x1, x2) =
δ

λ(x1, x2)
·

(
t

λ(x1, x2)

)δ−1
e
−

(
t

λ(x1,x2)

)δ
,

(38)

where δ and λ are the shape and characteristic life parameters,
respectively. As explained in [5], [14], and [16], the character-
istic life parameter is the same as the Arrhenius relationship
given by (20). The cumulative distribution function (CDF) of
a continuous random variable X can be calculated from its
PDF fX (t) as shown in (39):

FX (x) =
∫ x

−∞

fX (t)dt. (39)
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Using (38) and (39), the CDF of the Arrhenius-Weibull
model is as shown in (40):

F(t, x1, x2) = 1− e
−

(
t

λ(x1,x2)

)δ
. (40)

By substituting λ from (20) in (40), the CDF can be written
in the form shown in (41):

F(t, x1, x2) = 1− e
−

(
t

Ae
B

θH (t,x1,x2)

)δ
. (41)

Reference [35] proposes a formulation for the probability
of failure, as shown in (42):

Pf (T , x1, x2) =

∫ T+1t
T f (t, x1, x2)dt∫
∞

T f (t, x1, x2)dt
, (42)

where 1t is the length of the time interval, and f (t, x1, x2) is
the failure probability density function. Using (42), the failure
probability can be written as shown in (43).

Pf (T , x1, x2) =
f (T , x1, x2)

1− F(T , x1, x2)
. (43)

Using (38) and (40), equation (43) can be written as shown
in (44):

Pf (T , x1, x2) =
δ

λ(x1, x2)
·

(
T

λ(x1, x2)

)δ−1
. (44)

To linearize (44), the method explained in Section IV is
deployed. Using (23), the derivative of the transformer prob-
ability of failure with respect to x1 and x2 can be calculated
as shown in (45) and (46), respectively:

∂Pf (λ(T , x1, x2))
∂x1

=
∂Pf (λ)
∂λ

·
∂λ(T , x1, x2)
∂θH (T , x1, x2)

·
∂θH (T , x1, x2)

∂x1
, (45)

∂Pf (λ(T , x1, x2))
∂x2

=
∂Pf (λ)
∂λ

·
∂λ(T , x1, x2)
∂θH (T , x1, x2)

·
∂θH (T , x1, x2)

∂x2
. (46)

Using (44), the derivative of the transformer probability of
failure with respect to λ can be calculated as shown in (47):

∂Pf (λ)
∂λ

= −
δ2T δ−1

λδ+1
. (47)

Using (20), the derivative of λ with respect to the hottest
spot temperature can be calculated as shown in (48):

∂λ(θH )
∂θH

= −
A · B

θ2H
· e

B
θH . (48)

The derivative of the hottest spot temperature with respect
to x1 and x2 are calculated in Section IV and shown in (33)
and (34). Using (33), (47), and (48), the derivative of the

transformer probability of failure with respect to x1 is shown
in (49):

∂Pf (T , x1, x2)
∂x1

=
δ2T δ−1

λδ+1(x1, x2)
·

A · B

θ2H (x1, x2)

·e
B

θH (x1,x2) ·1θTO,rated ·(1−γO)·α ·n·(αx1+β)n−1

+1θW ,rated · (1− γW ) · 2m · x2m−11 . (49)

Using (34), (47), and (48), the derivative of the transformer
probability of failure with respect to x1 is shown in (50):

∂Pf (T , x1, x2)
∂x2

=
δ2T δ−1

λδ+1(x1, x2)
·

A · B

θ2H (x1, x2)

·e
B

θH (x1,x2) ·1θTO,rated ·(1−γO)·α ·n·(αx2+β)n−1

+1θW ,rated · (1− γW ) · 2m · x2m−12 . (50)

Using (25), (49), and (50), the transformer probability of
failure can be estimated in linear form for x1 and x2 as shown
in (51):

Pf (T , x1, x2)

=
δ

λ(x∗1 , x
∗

2 )
·

(
T

λ(x∗1 , x
∗

2 )

)δ−1
+(x1−x∗1 )

(
δ2T δ−1

λδ+1(x∗1 , x
∗

2 )
·

A · B

θ2H (x
∗

1 , x
∗

2 )
· e

B
θH (x∗1 ,x

∗
2 )

·1θTO,rated ·(1−γO)·α ·n·(αx∗1+β)
n−1
+1θW ,rated

·(1− γW ) · 2m · (x∗1 )
2m−1

)
+ (x2 − x∗2 )(

δ2T δ−1

λδ+1(x∗1 , x
∗

2 )
·

A · B

θ2H (x
∗

1 , x
∗

2 )
· e

B
θH (x∗1 ,x

∗
2 )

·1θTO,rated · γO · α · n · (αx∗2 + β)
n−1

+ 1θW ,rated · γW · 2m · (x∗2 )
2m−1

)
. (51)

The values of x∗1 and x∗2 can be assigned similar to the
explanation in this regard in the last paragraph of Section IV.
Considering that failure occurs only once, the probability
of failure is conditional on the fact that the transformer has
survived until the time of analysis [16]. This type of proba-
bility depends on the behavior of the equipment in the past;
therefore, theMarkovmodel is inapplicable. This formulation
is based on a fixed operating temperature. Hence, to deploy
it to evaluate the probability of failure for each moment,
it should be calculated for similar aging conditions, that is, the
equivalent operating time if the transformer had operated in
the current operating condition from the beginning. For exam-
ple, if the operating condition is normal, the transformer’s
effective aging in one year is equal to one year. However,
if the transformer operates under the overloading condition,
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its effective aging may reach one year in ten days. Hence, this
formulation should use the operating time for the operating
condition that leads to the same aging condition that the
transformer is in rather than the real operating time. The
effective age of the transformer can be calculated using (20),
as shown in (52):

TAge · Ae
B

θH ,ref = T · Ae
B

θH (x1,x2) . (52)

In (52), T is the equivalent age of the transformer if it was
operating in the operating condition of the current time-step
from when it was installed. T can be calculated as shown
in (53):

T =
TAge · Ae

B
θH ,ref

Ae
B

θH (T ,x1,x2)

. (53)

Using (20), equation (53) can be written as shown in (54):

T =
TAge · Ae

B
θH ,ref

λ (T , x1, x2)
=

Teq
λ (T , x1, x2)

, (54)

where Teq is defined as shown below:

Teq = TAge · A · e
B

θH ,ref . (55)

TABLE 1. Loading level of transformers as a fraction of full load.

TABLE 2. Characteristics of the transformer.

It should be noted that this time conversion should only
be applied when the stress level is greater than the stress at
the normal level and the FAA is greater than one. Under this
condition, equation (44) can be written as shown in (56):

Pf (T , x1, x2) =
δ

λ(x1, x2)
·

(
Teq

λ2(x1, x2)

)δ−1
. (56)

TABLE 3. Average relative error for acceleration factor linearization (%).

TABLE 4. Average relative error for probability of failure linearization (%).

Using (56), the derivative of the transformer probability of
failure with respect to λ is modified as shown in (57):

∂Pf (λ)
∂λ

= −
δ(2δ − 1) · T δ−1eq

λ2δ
. (57)

Hence, the linearized probability of failure when FAA >1
is shown in (58):

Pf (T , x1, x2)

=
δ

λ(x∗1 , x
∗

2 )
·

(
T

λ(x∗1 , x
∗

2 )

)δ−1
+(x1 − x∗1 )

(
δ(2δ − 1) · T δ−1

λ2δ(x∗1 , x
∗

2 )
·

A · B

θ2H (x
∗

1 , x
∗

2 )

·e
B

θH (x∗1 ,x
∗
2 ) ·1θTO,rated ·(1−γO)·α ·n·(αx∗1+β)

n−1

+1θW ,rated · (1− γW ) · 2m · (x∗1 )
2m−1

)
+ + (x2 − x∗2 )

(
δ(2δ − 1) · T δ−1

λ2δ(x∗1 , x
∗

2 )
·

A · B

θ2H (x
∗

1 , x
∗

2 )

·e
B

θH (x∗1 ,x
∗
2 ) ·1θTO,rated · γO · α · n · (αx∗2 + β)

n−1

+1θW ,rated · γW · 2m · (x∗2 )
2m−1

)
. (58)

As can be seen in Tables 3 and 4, the relative error of
deploying the proposed linear approximation is acceptable.

VI. VALIDATION
In this section, we describe a Monte Carlo simulation to
evaluate the precision of the developed linear equations in
comparison to the non-linear equations for transformer loss
of life and probability of failure. For this purpose, five levels
of loading for the transformer as shown in Table 1 were
considered.

The values x∗ shown in Table 1 are the linearization points
that will be used in (42) and (56) as x∗1 and x∗2 , which can
be employed to obtain a linear approximation. Because five
levels of loading are considered, based on the initial and
ultimate loads, there are 25 linear pieces. Although in this
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FIGURE 1. An illustration of the linear approximation for the aging
acceleration factor for fixed (a) FAA = 0.7, (b) FAA = 1, and (c) FAA = 1.2.
The corresponding level set for the nonlinear model (22) of FAA is shown
in red. The level sets of linear approximation based on (x∗1 , x∗2 ) point
representing the corresponding intervals from Table 1 are shown in blue.

paper all scenarios are considered, in the real world, it is not
likely that the loading of a transformer jumps from ‘‘Low’’
to ‘‘Extreme’’, for example, so many of the 25 defined linear
approximations may not be used. However, they are consid-
ered for the purpose of generality. The characteristics of the
transformer used in this case study are adopted from [14] and
are shown in Table 2.

In theMonte Carlo simulation, 10,000 scenarios of loading
are generated for each of the 25 linear pieces. The sample

FIGURE 2. An illustration of the linear approximation for the
transformer’s probability of failure for fixed (a) Pf=3e-7, (b) Pf=5e-7, and
(c) Pf=7e-7. The corresponding level set for the nonlinear model (44) of
Pf is shown in red. The level sets of linear approximation based on
(x∗1, x∗2) point representing the corresponding intervals from Table 1 are
shown in blue.

points are generated randomly in the specified ranges for
loading. In this simulation, the maximum limit for x1 and
x2 values is 5/3 and the minimum limit is zero. The average
relative error of linearizing in comparison to the non-linear
Arrhenius-Weibull model for transformer acceleration factor
and probability of failure for all 10,000 scenarios are calcu-
lated and shown in Table 3 and Table 4, respectively. The
average relative errors of the linear acceleration factor and
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the probability of failure are calculated using (59) and (60):

ηFAA =

∣∣∣∣1− FAA_Linear
FAA

∣∣∣∣ · 100%, (59)

ηPf =

∣∣∣∣1− Pf _Linear
Pf

∣∣∣∣ · 100%. (60)

To visualize the accuracy of the proposed formulations
for transformer loss of life and probability of failure, a new
simulation is performed and x2 is drawn with respect to x1
for fixed values of FAA and Pf . The results are shown in
Figures 1 and 2. In these figures, the red lines represent the
original non-linear models. To draw the red lines, the values
of FAA and Pf are assumed to be fixed and 160 uniformly
distributed points from 0.01 to 1.6 are assigned to x1. For each
sample points of x1 and fixed value of FAA or Pf , the value
of x2 is calculated using the non-linear Arrhenius-Weibull
model. The 32 blue points in each figure are uniformly dis-
tributed for x1 ∈ [0.05,1.6]. Similar to the red line, for each
sample point of x1 and fixed value of FAA or Pf , the value of
x2 is calculated using the corresponding linear approximation
proposed in this paper. The linear formulation is calculated
based on (x∗1 ,x

∗

2 ) point representing the interval containing
the corresponding red point, as shown in Table 1. As seen in
the figures, the proposed linear model is close to the original
nonlinear model.

VII. CONCLUSION
This paper proposes a linear form of the Arrhenius-Weibull
model for transformer loss of life and the probability of
failure. Linearization was performed using a Taylor series
under different loading conditions. The proposed formulation
is used in a case study that uses a Monte Carlo simulation
of 250,000 cases. The average errors of the linear models
compared to the non-linear model are calculated, and it is
observed that the error is acceptable, which makes the pro-
posed formulation accurate enough to be deployed.
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