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ABSTRACT Event detection in electrical grids is a challenging problem for machine learning methods due
to spatiotemporally nonstationary systems and the inability to automate event labeling in high-volume data
such as PMU measurements. As a result, the existing historical event logs created manually do not correlate
well with the corresponding PMU measurements due to scarce and temporally imprecise labels. Trying to
overcome this problem by extending event logs to a complete set of labeled events is very costly and often
infeasible. We focused on utilizing a transfer learning model to reduce the need for additional data labeling
by leveraging some labeled data instances available from a small number of well-defined event detection
task. To demonstrate the feasibility, we tested our approach on a large dataset collected by 38 PMUs from
theWestern Interconnection of the U.S.A. over two years. The model evaluation performed based on varying
percentages of labeled source data corresponding to∼20-700 characteristic events on different sizes of time
windows ranging from 2-seconds to 1-minute demonstrates that the developed method can significantly
improve automated event detection based on PMU measurements when extensive labeling is costly or
impossible to obtain. When compared to the state-of-the-art machine learning algorithms (unsupervised,
semi-supervised, and supervised), the results show that the transfer learning method has significantly better
performances when detecting events by learning from as low as 20 representative labeled data instances.

INDEX TERMS Big data applications, event detection, machine learning, phasor measurement units, power
system faults, signal sampling, smart grids, time series analysis.

I. INTRODUCTION
A. PROBLEM DEFINITION
The stored data collected by the Phasor Measurement
Units (PMUs) at the electric utilities in the USA has increased
to hundreds of terabytes in the last few years [1]. In the
past decade, PMU data have been used extensively for
post-mortem analysis in case of system-wide disturbances.
In recent years, utilities have been interested in investigat-
ing ways to increase the value of the stored PMU data
through novel applications of the machine learning models
for improved situational awareness and predictive decision-
making capabilities [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

Event detection is an essential task that involves detect-
ing instances in a dataset that significantly deviate from the
norm [3]. The increase in the volume of PMU data is making
it more challenging to quickly analyze a large number of
historical recordings.

Event detection can be deemed as an unsupervised learn-
ing task [4]. Usually, unsupervised approaches utilize the
underlying assumption that events occur infrequently, mean-
ing they fall in low-density regions of the instance space,
or they are distant from normal events to identify them. How-
ever, PMU data regularly violate this assumption, affecting
the performance of unsupervised approaches (e.g., mainte-
nance events can occur infrequently and irregularly, but are
considered normal). Labeled data allow detectors to correct
the errors made by unsupervised approaches. Unfortunately,
a fully supervised learning approach to event detection relies
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heavily on labeled data, which when done manually may be
labor-intensive and hence prohibitively expensive.

B. CONTRIBUTION
To avoid the expense of extensive manual labeling, semi-
supervised approaches to event detection are often used
in conjunction with active learning to efficiently collect
labels [5]. However, when dealing with a large amount
of PMU data, utilizing active learning to assign labels for
each individual instance might be infeasible. To reduce the
required labeling effort, we employ transfer learning to lever-
age a small number of well-labeled instances from one task
to another without additional labeling effort. We demon-
strate that a transfer learning method is applicable for PMU
data and can detect events without having to rely on an
extensive number of labels or event logs of PMU data.
Our approach outperforms state-of-the-art machine learning
algorithms from varying learning types (unsupervised, semi-
supervised, and supervised) on a large benchmark when
developing the model from a large dataset that requires inten-
sive event labeling effort. Experiments conducted show that
the employed transfer learning method is capable of detect-
ing events with as low as ∼20 representative labeled data
instances.

C. PAPER ORGANIZATION
The remainder of this paper is organized as follows. Section II
provides and describes the related work. Section III describes
and provides preliminaries on transfer learning for event
detection. Section IV describes the methodology used to
conduct experiments, evaluate and elucidate the proposed
transfer learning method, and provides insights into the com-
parison with a variety of learning types of algorithms used
in the literature. Section V describes the data preprocessing
techniques used in the experiments. The experimental setup
is outlined in Section VI. Section VII presents the experi-
mental results and discussion. Finally, Section VIII concludes
the paper. Section IX discusses future work. References are
provided at the end.

II. LITERATURE REVIEW
A variety of studies have investigated ways to reduce the
size of the PMU dataset by different means of dimensionality
reduction and feature engineering to address the increase
in the volume of PMU data. The dimensionality reduction
method based on Principal Component Analysis was used
in [6] for early online event detection, and in [7] to detect
and analyze complex cascading events. The feature engi-
neering method based on the Minimum Volume Enclosing
Ellipsoid was reported in [8]. Several studies have used sig-
nal transform methods, such as the fast variant of Discrete
S-Transform [9]–[11], or wavelet analysis [10]–[13]. Fast
event detection based on Detrended Fluctuation Analysis
on Big PMU Data was developed in [14]. Domain-specific
shapelets were investigated for event detection and classifi-
cation in [10], [11]. In [15] the Dynamic Programming based

Swinging Door Trending was used. Signal Energy Transform
was used to detect and classify faults in [16]. Several machine
learning models were tested in these studies: Agglomera-
tive Hierarchical Clustering [8], Extreme Learning Machine
classifier [9], K-Nearest Neighbor [10], [11], [17], Support
Vector Machine (SVM) [10], [11], [17], Decision Tree [17],
Convolutional Neural Network [13]. Transfer learning has
been applied to several power systems applications in recent
years, such as transient stability prediction in [18], detection
of oscillation events in [19], and detection of high-impedance
faults in distribution systems in [20]. Studies [18]–[20]
demonstrate the applicability of transfer learning to a variety
of power system problems. Our study extends the benefits of
using transfer learning to solve the problem of transmission
system event detection from an exceedingly small number of
labeled events based on PMU data.

III. TRANSFER LEARNING FOR EVENT DETECTION FROM
A SMALL NUMBER OF LABELS
While event detection tasks would benefit from labeled
data, it is often done using an unsupervised approach since
assigning labels across all the events manually can be time-
consuming and hence costly. The downside is that the unsu-
pervised detectors do not benefit from labeled data that
provide the possibility of correcting errors made by the unsu-
pervised detectors. On the other hand, supervised learning
algorithms rely on a sufficient number of labeled data. Thus,
supervised, and unsupervised learning algorithms are infea-
sible for event detection tasks when labels are scarce and
temporally imprecise. Transfer learning can be utilized to
leverage a small number of related labeled data instances
from a related task to the target task. Related instances can aid
semi-supervised learning algorithms to detect events based on
minimal labeled data, since it only selects and transfers tasks
that are similar to instances in the target set.

Often, transfer learning is used in conjunction with semi-
supervised learning algorithms, since semi-supervised algo-
rithms assume only a limited amount of labeled data instances
for training are available. Hence, semi-supervised learning
algorithms are employed when labeled data instances are
scarce and difficult to obtain. Semi-supervised learning algo-
rithms aim to train a classifier from both the labeled and
unlabeled data samples in order to achieve better performance
than supervised learning algorithms trained on labeled data
only.

The aim of transfer learning is to learn a model for the
unlabeled dataset of the target domain given labeled data from
a related dataset of the source domain [21]. Since this study
concerns event detection, the task is to compute and assign an
anomaly score to each time window (data instance) in the tar-
get dataset that quantifies how anomalous the time window is
based on similarity measures; assigning an anomaly score to
a time window can be compared with a predefined threshold
to classify whether an anomalous event exists within a given
time window [21]. We use Ds to denote the source dataset,
which contains labeled time windows, and Dt to denote the
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target dataset, which contains unlabeled time windows of
events to be classified as either normal or anomalous events.
We use xs to refer to a time window from the source dataset,
and xt to refer to a time window from the target dataset.

There are three important assumptions for transfer learning
techniques to be considered when applied to event detec-
tion tasks [22]. First, the source and target datasets were
obtained from the same m-dimensional feature space. Sec-
ond, the marginal distributions of the source and target
datasets differ (covariate shift assumption). A covariate shift
assumption occurs when dissimilar behaviors are observed
in either domain. Third, the conditional distributions can
differ due to changes in context, meaning the same behavior
might have a different meaning in the two domains (concept
shift assumption). Assumptions two and three complicate the
transfer task.

IV. METHODOLOGY
To demonstrate the performance of the utilized transfer learn-
ing method, a comparative analysis with a multitude of event
detection algorithms with varying learning types used as a
baseline was performed. Additionally, different datasets were
used for experiments with varying splits of the data and
window dimensions.

A. UNSUPERVISED LEARNING
Unsupervised learning algorithms aim to identify hidden pat-
terns without using any labeled data samples. Thus, unsu-
pervised learning algorithms are capable of learning without
an error signal to assess and evaluate the performance of the
model. Since unsupervised learning algorithms do not require
any labels during learning and identifying hidden patterns,
event detection tasks using this method can be beneficial
when labels are not available [23]. However, unsupervised
learning algorithms utilize the fundamental assumption that
events occur infrequently, and PMU data often violate this
assumption [5]. The lack of labeled data instances that pro-
vide the option to correct the errors made by unsupervised
detectors degrades the performance of the algorithms.

As a part of the comparison study, an event detection
experiment was performed using two unsupervised learning
algorithms, namely: 1) the k-nearest neighbor outlier (kNNO)
detection algorithm that computes for each data point the
anomaly score as the distance to its k-nearest neighbors in
the dataset [4], and 2) the isolation nearest neighbor ensem-
bles (iNNE) algorithm that computes for each data point the
anomaly score roughly based on how isolated the point is
from the rest of the data [24]. They learn a structure on
the training data without incorporating any labels into the
models. Event detection is performed on the test dataset to
classify data samples as anomalous or normal events.

In order to assess the performance of the algo-
rithms, the predicted labels were compared to the ground
truth (actual) labels obtained by visual inspection by a domain
expert.

B. SUPERVISED LEARNING
Supervised learning is based on training a model using pre-
viously observed labeled data samples and assuming that the
marginal distribution of the source training data and the target
test data are identical (no covariate shift assumption). Super-
vised learning algorithms tend to rely heavily on learning
data samples and require a sufficient amount of training data
before performing classification, which can be infeasible in
event detection tasks [23]. The more complex the problem
and the models are the more training data is required.

We employed state-of-the-art and most common conven-
tional supervised learning algorithms to compare with other
learning types. We used scikit-learn library for Machine
Learning in Python [25]. A variety of classification algo-
rithms from this library were utilized, including Multilayer
Perceptron (MLP), Logistic Regression (LR), K-Nearest
Neighbor (KNN), Support Vector Machine (SVM).

C. SEMI-SUPERVISED LEARNING
The semi-supervised learning concept is in between unsuper-
vised and supervised learning. Semi-supervised classification
algorithms aim to train a classifier from both the labeled
and unlabeled data samples, such that they achieve better
performance than the supervised or unsupervised learning
algorithms. There are many practical benefits in using semi-
supervised learning, especially, when labeled data instances
are scarce and difficult to obtain, since such algorithms
assume only a limited amount of labeled data instances for
training are available. Semi-supervised learning algorithms
might perform as well as supervised learning algorithms,
but with much fewer time-labeled data instances, which is
beneficial in event detection tasks to reduce annotation effort
resulting in reduced implementation costs [26].

Two semi-supervised learning algorithms that do not rely
entirely on labels obtained from event logs or by visual
inspection to classify data samples as normal or anoma-
lous events were utilized: 1) the semi-supervised k-nearest
neighbor anomaly (SSKNNO) detection algorithm, which is
a combination of the well-known kNN (i.e., unsupervised
learning) classifier and the kNNO (k-nearest neighbor out-
lier detection) (i.e., supervised learning) method [5]. Since
SSKNNO is a distance-based method that relies on Euclidean
similarity measure, the number of labeled instances does
not affect the learning process. Having as minimum as one
labeled data instance from each pattern of signals or type
of event should be sufficient for the algorithm to detect
events. The algorithm uses an unsupervised setting when a
similar labeled data instance is not available in the training
data. 2) the semi-supervised detection of outliers (SSDO)
algorithm, which computes an unsupervised prior anomaly
score, and then, corrects this score with the known label infor-
mation. It is based on constrained k-means clustering [27].
These algorithms take a partially labeled dataset that consists
of three labels: unknown (0), event (1), normal (−1), and
assigns a binary label (−1, 1) to each unknown instance in
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the dataset. The performance of the algorithm was assessed
by comparing the predicted labels to the ground truth labels.
Small proportions of labeled data samples combined with
unlabeled data samples were used during training.

D. TRANSFER LEARNING + SEMI-SUPERVISED LEARNING
We formulate the event detection task using transfer learning
technique as:

Input: Ds and Dt from the same feature space. Where Ds
denotes a source dataset containing labeled time windows
and Dt denotes a target dataset containing unlabeled time
windows Dt,;
Do: Compute an anomaly score for every time window

in Dt based on Dt and a subset of the related time windows
in Ds;

Output: y labels (predictions) indicating whether a time
window in Dt contains normal or anomalous behavior.

A two-step transfer learning approach used in our study
is based on a recently introduced LocIT algorithm [5], that
was not yet applied on PMU data. First, the algorithm takes
as an input a labeled source dataset Ds. Then, it selects a
subset from the labeled source time windows to transfer to
the unlabeled target dataset Dt . If the local data distribution
of a certain time window is similar in both the source and
target datasets, the algorithm transfers the time window from
the source to the target domain. LocIT utilizes unsupervised
learning techniques since labels for time windows in the
target dataset are not available and the labeled time windows
in the source dataset should not influence the transfer deci-
sion. Second, the algorithm computes an anomaly score using
a semi-supervised learning algorithm based upon nearest-
neighbor techniques that consider both the related time win-
dows that were selected and transferred from the source Ds
and the unlabeled target time windows [5].

LocIT selects and transfers similar time windows from Ds
to Dtrans, where Dtrans is a subset that contains the selected
labeled time windows for transfer [5]. Let D∗ = Dt ∪ Dtrans,
where D∗ is a dataset containing the transferred time win-
dows combined with the target unlabeled time windows. D∗

is a partially labeled dataset, where time windows fromDtrans
are labeled as an event (1) or normal (-1), and Dt time win-
dows are labeled as unknown (0). Then, a semi-supervised
SSKNNO algorithm takes D∗ as input and classifies each
unknown time window as an anomalous event or normal,
indicating whether a given event occurred in a given time
window or healthy signal respectively. This process is further
illustrated in the flowchart in Fig. 1.
Local Structure of TimeWindows:LocIT algorithm defines

the localized source distribution for a given source time win-
dow xs using the subset Nψ (xs,Ds) of the nearest neighborψ
of xs in Ds; and defines the localized target distribution based
upon the subset Nψ (xs,Dt) of xs’s ψ nearest neighbor in Dt .
Where ψ controls the strictness of the transfer. The higher
the value of ψ is (i.e., 1.0), the stricter the transfer is. If ψ
is 0, the algorithm ignores the differences of local distribution

FIGURE 1. Flowchart that illustrates the two-step process of event
detection using transfer learning + semi-supervised detector.

and considers the complete global structure of Ds and Dt to
determine the transfer.

The algorithm transfers a time window from the source
subset to the target subset if the distributions of both subsets
are sufficiently identical. The similarity measure (i.e., loca-
tion distance) used to compare the first and second order
statistics of Nψ (xs,Ds) and Nψ (xs,Dt) is defined as:

d1 (N1,N2) =

∥∥∥∥∥∥1k
∑
xi∈N1

xi −
∑
xj∈N2

xj

∥∥∥∥∥∥
2

. (1)

The location distance used in equation (1) is the l2-norm of
the difference of the arithmetic mean (i.e., centroids) between
two neighborhood subsets N1 and N2. Large values of d1
reduce the chance of meaningful transfer.

The distance between the covariance matrices of
two neighborhood subsets (i.e., correlation distance) is
defined as:

d2 (N1,N2) =

∥∥CN1 − CN2

∥∥
F∥∥CN1

∥∥
F

(2)

where ‖ · ‖F is the Frobenius norm and C is the covariance
matrix. The Frobenius norm was considered since N1 and N2
are matrices. Large values of d2 indicate that the localized
distributions of the source and target subsets are different,
which decreases the chance of a meaningful transfer.
Learning the Transfer Function: In order to transfer a time

window from the source Ds to target subset Dt , the transfer
function decides whether to transfer the time window based
upon combining the values of d1 and d2. LocIT utilizes an
SVM classifier that learns on the target distribution using
the target data only to serve as the transfer function. SVM
predicts whether a time window in the source instance fits
in the target domain by leveraging the smoothness assump-
tion, having the meaning that neighboring target time win-
dows have similar localized distributions while the farthest
time windows have dissimilar localized distributions. Hence,
the negative training instances are generated by computing
for every time window in the target subset a feature vector
consisting of the distances between the neighborhood subsets
of xt and its farthest neighbor. The one positive training
instance is generated for each instance xt by finding its nearest
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neighbor in the target subset and computing d1 and d2 on
the target subset. Finally, once the SVM classifier is trained
on the target subset using both the negative and positive
training instances, each instance from the source subset can
be predicted to check whether it belongs to the target. If it
belongs, the algorithm transfers it and adds it to Dtrans.

V. DATA PROCESSING
A. PMU DATA
The PMU dataset used for testing was provided in the Apache
Parquet database. The original dataset contains measure-
ments from 38 PMUs from the Western Interconnection of
the U.S.A. captured over a period of two years (2016-2017).
The dataset was anonymized by the provider. Geographical
locations of the PMUs and the network topology information
are not made available. The data are collected with two frame
reporting rates per second (fps), 30 fps, and 60 fps, and
contain measurements from PMUs located at several voltage
levels in the transmission network. This dataset corresponds
to a variety of event types, including line fault transformer
outages, and frequency events. Some data quality issues, such
as missing data, data duplicates, and outliers were observed
but did not have a significant impact on our method.

B. EVENT LOG
The event log received from the data provider contains man-
ually created labels with only an approximation of the event
start time with a precision of 1 minute. We referred to these
labels as temporally imprecise. The time labels were not
created based on the PMU time reference; thus, some events
were mislabeled and did not occur at the location of the
PMUs used in this study. Using such limited labels makes
it challenging to temporally extract more precise PMU labels
from the event log.

To extract temporally more precise labels, we considered
a set of labels created based upon visual inspection of the
PMU-recorded signals by a domain expert on our team.
The domain expert on our team relabeled the data to ensure
that the labels were accurate and precise, since the initial
labels (event log) received were inaccurate. The different
sets of labels (1-minute, 30-seconds, 10-seconds, 5-seconds,
2-seconds) for event and normal operations identified through
this study are presented in Table 1.

C. FEATURE EXTRACTION
We defined the Rectangle Area (RA) features extracted per
PMU for each timewindow.No data cleansingwas performed
on the PMUdataset from the chosen 38 PMUs prior to the fea-
ture extraction. The RA feature, created using the frequency
and positive-sequence voltage magnitude measurements, is
defined as:

RAPMU ,TW = (fmax − fmin) ∗ (Vmax − Vmin) (3)

where fmax and fmin are the maximum and minimum fre-
quency values, and Vmax and Vmin are the maximum and
minimum positive sequence voltage magnitude recorded

by the selected PMU device, inside the selected time
window TW.

After feature extraction, only minor cleansing of outliers
was performed by removing RA values that were too large to
be possible. Only 11 RA values were discarded. They were
replaced with zeros. The impact of missing data is negligible.
If at least two data points were present inside a time win-
dow, the RA was calculated. For example, in the case of the
1-minute window on a 30 fps PMU, we only need 2 out
of 1800 (30fps ∗ 60sec) points to be able to calculate the RA.
In case there is only one data point within a time window, RA
is set to zero. Data duplicates do not have any impact on this
method since the minimum and maximum values of voltage
and frequency are not affected by the duplicates.

The RA feature is sufficient to capture whether an event
has occurred within a time window. The RA feature is limited
to detecting events and is not suitable for classifying event
types. The RA feature was used since it yielded the best
performances among multiple data processing techniques
that were tested. Furthermore, aggregated RA features allow
the utilization of simple and efficient similarity measures to
compute distances between time windows to find the nearest
and farthest neighbors.

Data processed based on the rectangle area were standard-
ized using StandardScaler, which subtracts the mean, and
then scales each feature to unit variance.

TABLE 1. Number of labels per category and window selection method.

D. TEMPORAL SPLIT
A set of 38 PMUs that contain time windows collected over a
span of two years, 2016 and 2017 was split into two subsets,
where the first subset was used as a source dataset for transfer
learning, Ds, and the second subset is the target for transfer
learning, Dt . The split between two the subsets was based on
the temporal split between the years 2016 and 2017. Knowl-
edge was leveraged and transferred from the year of 2016,Ds,
to the target subset Dt , which contains time windows col-
lected from the year of 2017.Dt is a fixed dataset that contains
all windows from 2017 in all the experiments conducted.
Proportions of labeled time windows were randomly selected
from Ds, and combined with target time windows, Dt , in a
dataset D∗, which is a partially labeled dataset that contains
the transferred related labeled windows from Ds and win-
dows to be classified as anomalous or normal event, Dt .
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TABLE 2. Split into two subsets of PMUs for transfer learning based on calculated rectangle area during events.

While proportions of labeled time windows were randomly
selected, it was ensured that the selected time windows result
in a balanced subset containing both anomalous and normal
events.

For the unsupervised, semi-supervised, and supervised
classifiers, the set of 38 PMUs was also split temporally,
hence, training data containing data time windows from the
year of 2016, and test data containing data time windows
from the year of 2017. Since these classifiers do not trans-
fer related time windows, classifiers were trained on entire
time windows from 2016, and tested/classified time windows
from the future, hence, time windows collected from the
entire 2017.

Features for a certain time window were combined into
a feature vector that contains 38 RA features, one feature
for each observed PMU. Labels y are created for each time
window as (‘1’ – in case of an event reported, ‘−1’ –
in case of a normal operation) for transfer learning and
semi-supervised learning classifiers. Whereas, unsupervised
and supervised learning classifiers, windows are labeled as
(‘1’ – in case of an event reported, ‘0’ – in case of a nor-
mal operation). When performance measures were applied
to assess the performance of the transfer learning and semi-
supervised classifiers, predicted labels ‘−1’ were trans-
formed to ‘0’ to match with ground truth labels.

E. PMUs SPLIT
Similarly, a set of 38 PMUs was split into two subsets,
the source subsets, Ds, and the target subset, Dt . The split
between two subsets was made using RA feature based on the
following procedure. First, a set of 35 events was selected ran-
domly. For each of the 35 events, the RA feature was extracted
on each PMU. For each of the 35 events, top 3 PMUs with the
greatest RA were selected. Different subsets of PMUs were
iterated until the smallest subset was found that had at least
one of top three PMUs in each of the 35 events. This resulted
in 12 chosen PMUs that combined have a representative in
the top three RA in all 35 events. The procedure is outlined
in Table 2 using a simplified example with 7 PMUs and
4 events.

Additional 7 PMUs were selected randomly from the
remaining set of PMUs, totaling the final 19 PMUs in the
PMU Source Subset. The remaining 19 PMUs were placed

in the PMU target subset, Dt . A proportion of labeled time
windows fromDs were randomly selected; selected time win-
dows fromDs were leveraged and knowledge was transferred
to Dt . Then, related time windows selected for transfer from
Ds were combined with Dt in a dataset D∗.
Similarly, for the unsupervised, semi-supervised, and

supervised classifiers, Ds was used as the training subset and
Dt was used as the test subset. Since the aforementioned
classifiers do not transfer related time windows to the target
domain, all windows from the set of PMUs in Ds were used
for the prediction task.

Features for a certain time window are combined into a
feature vector that contains 19 RA features. The process of
creating labels y is identical to the process of the Temporal
Split experiment.

VI. EXPERIMENTAL SETUP
Extensive experiments conducted in our study are described
in this section. Using limited proportions of labeled data
incorporated into the models we assessed and compared
the capabilities of our method to alternative models (unsu-
pervised, semi-supervised, and supervised) to detect events
based on a limited proportion of labels, or without any labels
used. Experiments conducted included 2%, 5%, 10%, 25%,
40%, 55%, and 70% of available labeled data, corresponding
to 20, 51, 103, 259, 415, 570, and 726 available labeled
data instances respectively. Available data instances were
randomly selected from the source dataset Ds, whereas target
dataset Dt was fixed among all experiments. This does not
apply to unsupervised learning algorithms since they do not
incorporate any labels during learning. The performance of
the classifiers was evaluated using the area under the receiver
operating characteristic (AUROC) since this metric is the
standard in event detection tasks [28]. Other relevant per-
formance measures including Precision, Recall, F-1 score,
and Matthews Correlation Coefficient (MCC) (also known
as phi coefficient) were also reported. The formal defini-
tions of these metrics are very common and can be easily
found [29, 30, 31].

The different uses of leveraging knowledge from source
to target domain are illustrated in Section V-D and
Section V-E. A variety of experiments were conducted to
address the following comparative questions:
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• How do window sizes (time intervals) over which fea-
tures were computed affect the performance of the algo-
rithms? Different window sizes varying from 2 seconds
to 1 minute were experimented to determine the best
choice for the event detection task.

• How does the percentage of labeled time windows in
the source data affect the performance of the models?
Varying percentages of labeled source data ranging from
2% to 70% were experimented to analyze the perfor-
mance of the models and analyze what percentage of
labeled source data is sufficient for the models to detect
events.

A. HYPERPARAMETER TUNING
Hyperparameter tuning using cross-validation is infeasible
since labels of time windows in the target domain are not
available, and the distributions of the source data Ds and
target data Dt are dissimilar [31]. Instead, the baseline and
recommended hyperparameters in comparative studies were
used. LocIT has three significant hyperparameters that need
to be set. We used a transfer threshold ψ of 0.7, which
indicates how closely related time windows to be transferred
are and scaling that determines whether to scale the source
and target domain before transfer using StandardScaler. In the
final classifier, SSKNNO, the three significant hyperparam-
eters were set as contamination of 0.34, k of 1, and strict
supervision. The contamination is the threshold of anomaly
score, k is the number of nearest neighbors, and supervi-
sion indicates whether to use all time windows in the set of
nearest neighbors (loose) or use only windows that count the
window among their neighbors. Hyperparameters that were
set for all classifiers are listed in Table 3, categorized by a
learning type.

TABLE 3. Selected hyperparameters for the binary classifiers categorized
by learning type.

VII. EXPERIMENTAL RESULTS AND DISCUSSION
A. DISTRIBUTIONAL DIFFERENCE BETWEEN SOURCE
AND TARGET DATASETS
To demonstrate the applicability of utilizing transfer learning
techniques on PMU measurements data for event detection,
the three assumptions explained in Section III had to be
validated. Transfer learning is typically applied on datasets
where traditional machine learning modeling assumptions
are violated since the marginal distributions of the source
and target subsets are dissimilar (covariate shift assumption),
or the conditional distributions are different owing changes in
context, in which the meaning of the same behavior might be
different in both the source and target domains (concept shift
assumption). Therefore, in the initial experiment of our study
Kolmogorov-Smirnov (KS) test for comparing the similarity
between two continuous distribution functions G and F , was
used to check whether the source and target distributions are
identical by comparing the underlying distributions F(x) and
G(x) of two independent samples [32], where x denotes to
the RA features for a certain PMU. The null hypothesis was
F = G, indicating that the distributions of the source and
target are identical.

FIGURE 2. An example to illustrate the distributional difference between
the source (2016) and target (2017). X-axis is the time window RA values
for a certain PMU, and y-axis, P denotes to the probability that a certain
RA feature will belong to a certain pin. Both top and bottom figures show
the distribution of the same PMU over two years, where source contain
RA features collected over 2016 and target contain RA features collected
over 2017.

We applied the KS test metric on the source and target sub-
sets, where the source is a 1-dimensional array containing the
RA features collected over the year 2016 for a single PMU,
and the target was a 1-dimensional array containing the RA
features collected over 2017 for the same PMU. This process
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FIGURE 3. Comparing performances of the proposed transfer learning algorithm LocIT based on varying percentages of labeled source data on different
window dimensions to three alternative learning types SKNNO, MLP, and kNNO, based on AUROC metric. Performances improve with more labeled data
added to the source. Results are consistent and show that LocIT, always performs better with limited labels used. This experiment was conducted based
on a temporal split.

was repeated for each PMU. Furthermore, we confirmed the
results using the Empirical Distribution Function (EDF) by
modeling and sampling the cumulative probabilities for a data
sample that does not fit standard probability distribution.

We obtained the p-values from the KS test metric for all
PMUs. The maximum p-value was 3.9e−15, hence, due to a
very small p-value (i.e., < 0.01) we can safely reject the null
hypothesis, indicating the source and target distributions are
different. Fig. 2 shows an example for one PMU to illustrate
the distributional difference between the source and target
subsets. The top and bottom figures show the distribution of
the same PMU over two consecutive years.

Many reasons could lead to a distributional difference
of PMU data collected from the future. That might occur
since power systems experience randomness of occurrence
of events depending on the circumstances, including but not
limited to, weather, equipment failures, wear and tear, and
the fact that operating conditions differ every year. Thus,
this experiment suggests that transfer learning could be more
applicable than supervised learning alternatives that assume
the same distribution.

B. THE EFFECT OF VARYING PERCENTAGES OF LABELED
DATA
In order to study the effect of the amount of labeled source
data on the performance of our model versus other mod-
els, a variety of percentages of labeled time windows were
analyzed. Often, it is non-trivial to acquire labeled data or
event logs for event detection tasks since label extraction
can be expensive and sometimes impossible to obtain. Thus,
this experiment is relevant and provides insights on what
percentage of labeled data is sufficient for the models to
detect anomalous events. We randomly sampled 2%, 5%,
10%, 25%, 40%, 55%, and 70%, corresponding to 20, 51,
103, 259, 415, 570, and 726 of labeled source data Ds
and only considered these labeled time windows when

performing a transfer. Experiments were repeated five times
and the results were averaged. This experiment was con-
ducted based on Temporal Split of the data described in
Section V-D. The best performing methods from three alter-
native learning types (i.e., unsupervised, semi-supervised,
fully supervised) were chosen and compared to the transfer
learning method.

Fig. 3 shows that the AUROC improves with more labeled
data added to the source subset on three datasets with different
window dimensions, listed in Table 1. The utilized transfer
learning method LocIT, outperforms unsupervised kNNO,
semi-supervised SSKNNO, fully supervised MLP, learning
algorithms with limited or no labels used in the source data.
With only 2% of labeled source data used, corresponding
to ∼20 characteristic events the transfer learning algorithm
performed generally well, while the fully supervised algo-
rithm performed poorly. The gap widened between super-
vised learning and transfer learning algorithms as the labeled
source data decreased. However, with>60% of labels, super-
vised learning outperformed transfer learning with a slight
increase in AUROC. There were considerable discrepancies
between supervised and transfer learning algorithms with
<10% of labels used in all experiments conducted. The unsu-
pervised kNNOs curves are straight lines because it is trained
without using any labels and it only considers the target
data. This was included to visualize and compare with other
algorithms. The unsupervised algorithm was trained without
any labels, outperformed supervised learning algorithm with
<5% of labels in 2-seconds time windows. With 1-minute
and 30-seconds time windows, unsupervised outperformed
supervised learningwith approximately<30% of labels used.
Unsupervised learning performed poorly compared to trans-
fer learning and semi-supervised algorithms with a small
percentage of labeled data used, since labeled data can assist
with correcting the errors made by unsupervised detectors.
The semi-supervised algorithm’s performance was adjacent
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to transfer learning’s performance with >10% of labeled
data. Transfer learning’s performance was greater than semi-
supervised learning with <10% of labeled data since only
related time windows were used to guide with the event
detection task. On average transfer learning yields an aver-
age increase in AUROC of approximately 13% compared
to supervised learning, and 5% compared to unsupervised
learning. This provides an evidence that the proposed transfer
learning approach can help with PMU event detection tasks
when labels are not available or are expensive to obtain.
Additionally, this shows that supervised learning algorithms
rely heavily on labels and are infeasible for detecting events
with limited labeled data.

TABLE 4. Performance of various models trained using only 20 labeled
events based on temporal and pmus split.

C. TRANSFER LEARNING vs. BASELINE ANOMALY
DETECTORS
Table 4 compares the proposed transfer learning algorithm,
LocIT to baseline algorithms with different learning types
based upon the best performing length of time windows
(i.e., 2-seconds) with only 2% of labeled data used to chal-
lenge the event detection task based on Temporal Split
and PMUs Split of the data. In both experiments, transfer
learning outperformed unsupervised, semi-supervised, and
fully supervised algorithms. Results were consistent among
all experiments conducted on all datasets. With sufficient
amounts of labeled data available, supervised algorithms per-
form well. However, when limited or no labels are avail-
able, unsupervised algorithms, semi-supervised, and transfer

learning with semi-supervised, outperform supervised learn-
ing algorithms. Additionally, Table 4 shows consistency of
results where LocIT outperforms other models with lim-
ited labeled data and shows significant improvement over
supervised algorithms (MLP, LR, KNN, SVM). Experiments
conducted provide evidence that Transfer Learning and Semi-
supervised algorithms aremore feasible than supervised algo-
rithms for event detection tasks when labels are scarce.

FIGURE 4. LocIT’s performance based on AUROC by varying window sizes
based on temporal and PMUs data split.

D. THE EFFECT OF VARYING TIME WINDOW SIZES
In order to explore how the window size affects the
performance of the models, a variety of window sizes
were analyzed, including 2-seconds, 5-seconds, 10-seconds,
30-seconds, and 1-minute window sizes. Fig. 4 shows that
the AUROC improves with shorter window sizes among
both experiments Temporal Split and PMUs Split. Applying
transfer learning algorithm on 2-seconds window size yields
an approximately 7% increase compared with 1-minute win-
dows based on Temporal Split of the data, and 5% increase
based on PMUs Split of the data. The increase in AUROC is
due to the nature of the distance-based classifier. Each time
window was manually inspected to make sure that the start
of the anomalous event fell within of the selected time win-
dow. Anomalous events result in fluctuations (i.e., abnormal
behavior) in the signal. As such, when detecting events, dis-
tance metrics in shorter time windows highlight the deviation
from normal operation more than when longer time windows
are used, since the anomalous event corresponds to a shorter
timeframe, whereas the rest of the signal corresponds to nor-
mal operation. Hence, having a longer timewindow can dilute
the event effect in the window. Fluctuations impact the RA
feature values owing to the difference between the minimum
and maximum values of positive sequence voltage magnitude
and frequency. There was no significant increase in AUROC
between the 2-second and 5-second windows. There was a
significant improvement in AUROC when detecting events
based on 2-second windows compared to 1-minute windows.
The increase in AUROC observed when comparing 1-minute
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FIGURE 5. The top figure shows 1-minute time window of normal
operation, and the bottom figure shows 2-seconds time window of
normal operation. Each colored line corresponds to a certain PMU.
Shorter time windows produce less fluctuations, resulting in better
performance in detecting events.

labels to 2-second labels can be explained by the smaller
fluctuation of normal operation within a shorter time win-
dow. Experiments conducted show that shorter time windows
result in a higher AUROC. Thus, the size of the time win-
dows was determined based upon the size that exhibited the
best performances formed on the results obtained from the
conducted experiments.

Fig. 5 demonstrates the fluctuations caused by longer time
windows based upon two normal operation instances cap-
tured in a 2-second and 1-minute time windows. 1-minute
time window shows more fluctuations occurred during the
normal operation, and the 2-second time window showed
slight fluctuations occurred during the normal operation.
Thus, the use of a shorter time window exhibits less fluctua-
tion resulting in a better performance.

E. LEVERAGING KNOWLEDGE ON TEMPORAL AND PMU
SPLITS
Two experiments were conducted based on different ways of
leveraging the data from source to target to test and ensure
the model’s robustness. Different data splits are introduced in
Section V-D and Section V-E. Fig. 4 shows the performance
of transfer learning algorithm, LocIT, based on Temporal
Split and PMUs Split of the data. As can be seen, leveraging
limited knowledge temporally, from the year of 2016 and
transfer to 2017 results in a slight decrease in AUROC, which
can be explained by the randomness of occurrence of events
depending on the circumstances that might differ from a year
to another. Leveraging knowledge from a set of PMUs to
another set of PMUs shows an increase in AUROC, but the

FIGURE 6. Both the top and bottom figures show 2-second time windows
that contain events. The top figure shows an obvious event that was
observed by most PMUs and was classified correctly as anomalous event.
The bottom figure shows a very minor dip in voltage that did not affect
most of the PMUs; hence, it was not classified correctly. The bottom time
window was classified as normal event.

difference is not significant. Splitting the source and target
datasets temporally yields a decrease of approximately 1.5%
compared with the PMUs split of the data. Thus, this shows
that it is feasible to transfer knowledge from historical data
and apply it on time windows from the future, and/or time
windows from a specific set of PMUs to another set of PMUs.

F. MISCLASSIFIED TIME WINDOWS
We examined the time windows that were misclassified by
the transfer learning approach to event detection to develop
a better understanding of the nature of events that led to
errors in detecting events. Both false positives (FPs) and false
negatives (FNs) were observed. FPs are events that were
misclassified as anomalous operation, but in fact, they were
normal operations. FNs are the events that were misclassified
as normal operation, but in fact, they were anomalous events.
A pattern was observed based upon visually inspecting the
misclassified events. These events were local events, meaning
that they were not observed by most of the PMUs in the
interconnect. Moreover, their impact on local PMUs in terms
of prominent changes in voltage or in frequency is weak as
compared to major events that might precede them. Recall
that the input to the algorithm is a vector of RA features
from all the PMUs. The difference between themaximum and
minimum voltage and frequency in these instances was not
as substantial, resulting in a smaller value of RA. Thus, since
most PMUs did not observe these changes, false classifica-
tion (i.e., errors) occurred. Additionally, since the employed
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semi-supervised detector is distance-based, the weak changes
in voltage or in frequency affected the distance metric due to
fluctuations in the time window, hence, the detector misclas-
sified these instances.

Furthermore, upon visual inspection of the misclassified
events, we observed unrealistic values of frequency in the
order of thousands of Hz or sudden drops to zero in the
value of voltage and frequency, since no data cleansing was
performed prior to the extraction of the RA features. Hence,
this led to false classifications as well.

Fig. 6 provides two 2-second time windows that contain
events. The top figure shows an apparent event with a signifi-
cant drop in voltage and was observed by most PMUs, hence,
it was classified correctly as anomalous event. The bottom
figure shows a misclassified time window since there was
a very minor drop in voltage and did not affect most of the
PMUs (i.e., local event).

G. STATISTICAL SIGNIFICANCE ANALYSIS
Statistical analysis was performed to assess the signifi-
cance and stability of the proposed method’s performance.
To address how frequently we can expect the proposed
algorithm LocIT to obtain the same performance measured
based upon the AUROC metric under different conditions,
we randomly selected 19 PMUs for the source data and the
remaining 19 PMUs were the target data. For consistency
with experiments conducted in this study, we leveraged only
20 labeled time windows from the source data to predict the
target domain. We repeated the random selection of PMUs
10 times and obtained results from all algorithms used in this
study. Then, we employed a t-test with a significance level
of 0.1 to obtain confidence intervals with 90% confidence
level for the average AUROC for each algorithm individually.
Table 5 summarizes the average AUROCs and their corre-
sponding two-sided confidence intervals. In general, confi-
dence intervals obtained for the algorithms are very small
(< 0.05), hence, it is possible to rely on these algorithms to
obtain a similar AUROC with 90% confidence level. LocIT
obtained an average AUROC of 0.94 with a confidence inter-
val width of 0.0032, meaning that the average may vary up to
±0.0032 outperforming baselines with high confidence.

Moreover, an additional analysis was performed to assess
how statistically more significant the performance of LocIT
is, compared to the other algorithms. We calculated the dif-
ferences between LocIT’s AUROC and baseline methods and
employed a t-test. The p-values obtained were very small
(< 0.05). The p-value obtained by comparing LocIT to the
second best-performing method SSKNNO was 1.4e−8, indi-
cating that LocIT’s performance is significantly better than
other baselines.

VIII. CONCLUSION
Since obtaining extensively labeled data can be labor inten-
sive, and requires domain knowledge, it may be too costly,
especially, when working with big datasets. The results of our

TABLE 5. Summarizes the average AUROC and their corresponding
two-sided confidence interval, calculated at 90% confidence level.

study show several benefits of the transfer learning approach
utilized for event detection tasks:
• It yields an average increase in AUROC of approxi-
mately 13% compared to the best performing supervised
learning algorithm, and 5% compared to the best per-
forming unsupervised learning algorithm. The signifi-
cant accuracy improvements were evident when relying
on only 2% of labeled data corresponding to 20 charac-
teristic events.

• The performance is less affected by the decrease in the
number of available labels, and algorithm provides high
performance even with only 20 representative labeled
events used. In comparison, the supervised learning
algorithms are infeasible for event detection in this
domain when labels are very limited.

• The proposed approach is robust to temporal and loca-
tional options for splitting the PMU data. Consequently,
it is feasible to leverage and transfer knowledge from
historical PMU data to improve learning on future unla-
beled instances, and to transfer selected labeled events
from a specific set of PMUs to another set of PMUs.
The reported results provide evidence that identifying a
variety of event types, including line faults, transformer
outage, and frequency events by a model that can be
deployed to detect events in future PMU data while
avoiding challenges faced by online learning.

FUTURE WORK
The experiments conducted show that the proposed transfer
learning approach is capable of detecting events by leveraging
minimal labeled time windows from a related task within
PMU data of theWestern Interconnection of the U.S.A. Upon
promising results reported in this paper, the proposed tech-
nique could be extended to leverage labeled time windows
from the Western Interconnection of the U.S.A. and transfer
learning to the Eastern Interconnection of theU.S.A. for event
classification task. The challenge of this task revolves around
different number of PMUs at two interconnections, resulting
in different dimensions of feature vectors. Moreover, the
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distance metric used in the semi-supervised detec-
tor (SSKNNO) might be less effective for the Eastern Inter-
connection where a much larger number of PMUs were
observed. Hence, implementation of an appropriate distance
measure that is suitable for high dimensional feature vectors
might be required to enhance the event detection task.
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