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Abstract— Although the penetration of electric vehicles is 

relatively low today, it is expected to grow in the future, 

particularly in urban areas exposed to excessive tail-pipe 

pollution. In some urban areas, this growth may be faster due to 

a concentrated EV adoption in affluent neighborhoods; hence, 

the grid power transformers in such areas may be at risk of 

accelerated ageing. This impact can be mitigated by using 

consumer-owned battery energy storage and photovoltaic 

generation. We propose a coordination approach of utilizing 

such assets not only to support the distribution grid and 

maximize consumer profit, but also to mitigate the ageing of the 

distribution transformers. A case study of electric vehicle high 

penetration consequences is illustrated using data for an urban 

area of the city of Bryan/College Station in Texas. EV charging 

data in a residential area were synthesized using a Monte Carlo 

simulation. Finally, the economic impact of optimal EV 

charging is studied.  

Keywords— Battery energy storage system, PV generation, 

electric vehicle, loss of life, transformer. 

I. INTRODUCTION 

While electric vehicles (EVs) may account for a small 

percentage of vehicles on the market today, adoption is 

accelerating and gaining momentum. For several reasons, 

such as financial, social, cultural, and political, this growth in 

EV deployment varies in different countries, cities, or even 

neighborhoods. This may lead to high penetration of EVs in 

some parts of a given distribution grid, which may cause 

occasional overload of transformer assets in such areas. 

Continuous and frequent overloading puts the transformer 

under thermal stress, which causes accelerated ageing. At the 

distribution level, power transformers do not have elaborate 

monitoring systems and, as a result, their loading is usually 

not closely monitored. EV charging may be concentrated in a 

given area, causing transformer overloading over an extended 

time, which may lead to transformer failure [1], [2]. The loss 

of life and premature failure in large numbers may impose 

additional financial constraints on electric utilities. Upgrading 

the grid with a number of larger capacity transformers may be 

prohibitively expensive and might not be considered a feasible 

solution for this situation, at least in the short run. 

One possible solution to mitigate this impact and help the 

distribution system assets reach their normal life expectancy 

is to rely on the customer installation of photovoltaic (PV) 

generation to shave the peak demand and battery energy 

storage system (BESS) to shift the time of demand (Fig. 1). 

BESS can be deployed for different purposes, such as voltage 

control, peak shaving, and mitigating frequency events [3]. 

The impact of EV charging on transformers is studied in [4]–

[7]. Reference [8] shows how different penetration levels of 

EVs would accelerate the ageing of transformers in a 

residential building. Reference [9] utilizes a probabilistic 

method to assess the impact of EV charging and PV 

generation on the ageing of transformers. In [10], the authors 

propose an in-site fuzzy controller that manages the charging 

of EVs considering the information of EVs next trips, as well 

as the EV owner’s comfort selections. Reference [11] 

investigates the impacts of EV fast chargers on transformer 

aging and the effectiveness of deploying solar shingles and 

battery energy storage to mitigate the impact. A transformer 

anti-ageing system that uses battery energy storage to mitigate 

the impact of high renewable energy penetration on 

transformer aging is proposed in [12]. The optimization 

formulations provided in [13] and [14] aim to mitigate the risk 

for transformers using PV and BESS supports. References 

[15] and [16] introduce rule-based methods to mitigate the risk 

for transformers by identifying and shaving peak hours. 

The contribution of this study is the development of a 

coordination and management approach by which the 

consumer profit from employing BESS and PV systems is 

optimized while the stress on the utility assets is minimized. 

Use cases with different scenarios are developed to study the 

effectiveness of the proposed approach. Some use cases show 

how the implementation of the approach is profitable.   

This material is based on work supported by the American Public Power 

Association DEED scholarship awarded in 2020. 

 

Figure 1. The schematic of the studied system. 



The paper first provides the economic model in Section II, 

then proposes the BESS coordination strategy in Section III, 

explains the use cases in Section IV, demonstrates the results 

in section V, and finally provides conclusions in section VI. 

II. THE ECONOMIC MODEL 

The thermal conditions of transformers are mainly 
affected by the ambient temperature and transformer loading. 
Increased copper loss during an overload raises the 
temperature near the windings and leads to an accelerated 
transformer loss of life. To quantify the transformer loss of life 
and aging due to thermal conditions, IEEE Standard C57.91 is 
used [17]. This approach is thoroughly explained in [18] and 
[19]. A brief explanation of the loss of life calculation can be 
found in the appendix.  

The equivalent daily cost (EDC) reflects the cost of 
owning and operating the transformer [20], and it is utilized to 
assess the economic impact of the transformer loss of life on 
the economic impact. The EDC at time slot t can be calculated 
as shown in (1).  

                  (1)
1

1
(1 )

t

Remaining Life

Asset Current Value r
EDC

r







 

where r is the interest rate. When the transformer is new, the 
EDC is calculated using (2).  
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This can be employed to calculate the transformer current 
value (TCV) at time slot t using (3), which is derived from (1). 
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Two TCVt values can be calculated for two scenarios: a) 

when the loss of life is mitigated and b) when the loss of life 

is not mitigated. The difference between the TCVs in these 

scenarios reflects the financial benefit of mitigating the 

impact.  
As explained in [20], the difference between the present 

value of all inflows and outflows is the NPV. In this study, the 
inflow is the investment in the transformer, which is the 
transformer value, and outflow is the transformer loss of life. 
Using [20], the formula for calculating the NPV is shown in 
(4). TPB is the time required to recover the initial investment, 
namely, the payback period, which can be calculated using 
(5). 
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The cost, which is caused by the loss of life of a 
transformer in a day, is the difference between the EDC before 
and after the investment in PV and/or BESS.  
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The payback period can be calculated using Equations (5) 

and (6). 

III. THE BESS COORDINATION STRATEGY 

A. System Description 

A schematic of the system under study is shown in Fig 1. 
The main elements of the system are residential buildings, 
which, as shown in the enlarged part, host a load, stationary 
BESS, PV, and mobile BESS (EV) connected to the grid 
through the same transformer. It is assumed that both the 
mobile and fixed BESSs can operate in charging and 
discharging modes. The generation of a PV system depends 
on the weather and the related solar irradiation. Optimization 
algorithms are required to coordinate the operation of each 
building. A central controller coordinates the energy exchange 
between the different parts of the system. Market-based 
management decisions are made and implemented by sending 
coordination commands to each element.  

B. Coordination Strategy 

In this section, the optimization model for the energy-
exchange coordination strategy is explained. An optimal 
planning scheme for the exchange should simultaneously 
maximize the profit for the customer and utility at the same 
time. The nature of the relationship between utility and 
customer and incentives for customers are out of the scope of 
this paper and will be discussed in a separate publication. As 
shown in (7), the objective function of the optimization model 
consists of the cost of power supplied by the grid, the power 
lost during the energy exchange process, and the economic 
impact of loss of life mitigation.  
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The costs shown in (7) can be calculated using (8)-(10).  
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where PBESS
 D  and PBESS

 Ch  are the powers that can be exchanged 
through the inverter for battery discharging and charging, 
respectively. Ech is the energy capacity of the battery. Max and 



Min refer to the maximum and minimum values, respectively. 
PBESS,t is the power exchange for the battery at time step t, 
where a positive value means that the battery is getting 
charged and a negative value means that the battery is 
discharged. η is the efficiency of the battery energy storage 
system. SOCBESS is the state of charge of the battery. CG,t is the 
cost of power supplied by the grid. CL,t is the cost of power 
lost in the energy exchange, and CLOL,t is the cost of loss of 
life. The inequalities shown in (11)–(13) represent the limit of 
the BESS inverter, and the limits of charging and discharging 
based on the battery capacity and state of charge. Equation 
(14) is also used to balance the power. 

The optimization problem is constrained nonlinear and 

solved using an interior point algorithm [21]. 

IV. CASE STUDY 

A case study is developed to test the proposed 

coordination strategy for use cases covering one year of 

different scenarios. Some of the required data, such as 

temperature, are readily available. Some data, such as the EV 

demand history that is not available, should be synthesized. 

The vehicles used in the case study are Nissan Leaf and 

Chevy Bolt, and their specifications are listed in Table I. In 

this study, there are 12 EVs owned by residents and 10 

charging slots in parking spaces.  

TABLE I.  SPECIFICATIONS OF EVS USED IN THE CASE STUDY. 

 
Capacity of EV 
Battery (kWh) 

Electricity Consumption 
(kWh/100miles) 

Chevy Volt 16 0.36 

Nissan Leaf 24 0.34 

The nominal power of the transformer connected to these 
10 buildings is 63 kVA and the total PV generation capacity 
of each building is 10 kW. The sum of the rated power of the 
BESS inverter is considered to be 5 kW. It is assumed that 
the EV charger is unidirectional, and the EV can only be 
charged.  

The load data are from the National Renewable Energy 
Laboratory’s (NREL’s) OpenEI dataset [22]. The amount of 
PV system generation is calculated using PVWatts [23]. The 
temperature data with a resolution of one hour is extracted 
from the Iowa Environmental Mesonet [24]. Electricity price 
data is obtained from the ERCOT data repository [25]. The 
deployed tools and data are presented in Fig. 2.  

The proposed coordination strategy is implemented for 
the following use case scenarios:  

a) w/o PV, w/o EV, and w/o BESS. 
b) w/o PV, w/ EVs, and w/o BESS. 
c) w/ PV, w/ EVs, and w/o BESS. 
d) w/o PV, w/ EVs, and w/ BESS, whose charging 

schedule is optimized using (8), which means that only 
the real-time price of electricity is considered. 

e) w/o PV, w/ EVs, and w/ BESS, whose charging 
schedule is optimized using (16), which means both 
the real-time price of electricity and the cost of 
transformer loss of life are considered.  

f) w/ PV, w/ EVs, and w/ BESS, whose charging 
schedule is optimized using (8), which means only 
price is considered. 

g) w/ PV, w/ EVs, and w/ BESS, whose charging 
schedule is optimized using (16), which means that 
both the real-time price of electricity and the cost of 
transformer loss of life are considered. 

The implemented scenarios with different capacities of 
battery are as follows: 

I) BESS capacity is 10 kWh. 
II) BESS capacity is 20 kWh. 
III) BESS capacity is 40 kWh. 

Two main approaches for scheduling optimization are 
taken: a) coordination strategy and its cost function shown in 
(8), where the loss of life of the distribution transformer is 
considered in the calculations, and b) the loss of life is not 
considered, as shown in (15). The results for these two 
approaches will be compared to illustrate how employing 
each approach will impact the risk of the loss of life and 
payback period for BESS and PV.  
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As can be seen in (16), it is assumed that it is possible to 
forecast the load and PV with a normal distribution error. The 
accuracy of the predictions decreases when they are made 
further in the future. Hence, the standard deviation of the error 
depends on the time at which the prediction is for. The entire 
programming framework to provide this forecast can be seen 
in (16)–(19). For the normal distribution, the mean value is 
considered to be 0. The standard deviation is given by (17).  
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where FC is the abbreviation for forecasting. FC_dist 
represents the distribution of forecasts. TFC is the time of the 
forecast, and TCurrent is the moment when the analysis is taking 
place.  

The load forecast and data, PV generation and data, and 
BESS coordination when considering loss of life and when not 
considering it for February 9, 2018, at 12 A.M. are shown in 
Fig. 3, 4, and 5, respectively. The forecast results were 
generated using probabilistic methods to illustrate that. to 
illustrate that even if the forecast is inaccurate, the results of 
the proposed management tool are still acceptable. A more 
detailed forecast method is beyond the scope of this study.  

V. RESULTS 

The results of implementing the optimization approach for 
different scenarios are presented in this section. To evaluate 
each scenario, a one-year study is conducted using the data 
available for 2018 in Bryan/College Station, Texas. The 
synthesized EV data are added to the load curve, and the 

 
Figure 2. Utilized tools for case study. 



optimization problem is used to illustrate the coordination 
strategy. The optimization is solved using an interior point 
algorithm to manage the BESS charging/discharging 
schedule. The economic and risk mitigation impacts of this 
approach are illustrated in the remainder of this section. 

A. Economic Impact 

BESS and PV are expensive equipment to purchase, and 
before the investment decision, the viability of deploying them 
should be studied. Because the efficiency of the BESS is not 
ideal, some energy will be lost during the 
charging/discharging procedure, and hence deploying BESS 
will increase the total energy consumption. Therefore, it is 
necessary to study whether deployment scheduling justifies 
the investment.  

There are several retail frameworks in the electricity 
market, and they vary based on countries, states, and even 
cities. In College Station, studied in this paper as the use case, 
the utility has to purchase electricity in the electricity 
wholesale market based on the prices determined by the 
Electric Reliability Council of Texas (ERCOT) every 5 
minutes. In the current market framework, the utility is the 
main beneficiary of minimizing the cost of power supplied by 
the grid.   

Utilities as the owners of distribution transformers benefit 

from the transformer loss-of-life mitigation strategy. In the 

long term, the lowering expenses for the utility will lead to 

avoiding an increase in the cost of electricity delivered to the 

end consumer. Thus, both utility and consumers benefit. There 

should be additional incentives passed from utilities to 

consumers to make the investment viable. The distribution of 

profit as well as the relationship between utility and 

consumers (or utilities, aggregators, and consumers in a more 

complex energy exchange system) are beyond the scope of 

this paper and may be discussed in future studies.  
A summary of the parameters utilized in this study is 

presented in Table II. The transformer’s remaining life is 
112000 hours out of the initial 180000 hours life expectancy. 
The costs and rates shown in Table II are obtained from [26]–
[31]. The average rate of electricity price increase in the USA 
in the last 20 years is considered the future electricity price. 
The interest rate is obtained from the U.S. Federal Reserve 
Board of Governors announcement in December 2018 [32].  

TABLE II.  COSTS AND FINANCIAL PARAMETERS 

Equipment Costs Financial Parameters 

PV System $2200/kW 
Energy price 
increase rate 

2.6% /year 

BESS $800/kWh 
Discount 

Rate 
2.5% /year 

Transformer 
NPV 

$5000 

Operating and maintenance Costs 

PV system $30/kW/year BESS $7/kWh/year 

 
Using the introduced model, the payback period and 

annual profit for different scenarios are calculated and are 
shown in Fig. 6 and Fig. 7, respectively. In Fig. 7, only the 
results from scenarios f and g are included because the 
payback periods for scenarios d and e are much longer than 
the age of the assets. This shows that in this situation, 
managing the battery charging/discharging based only on the 
electricity price will make the project infeasible. The other 
interpretation of Fig. 7 is that, at least with current prices and 
costs, employing PV without subsidies is not economic. It can 
be seen that increasing the battery capacity prolongs the 
payback period even to the point that it is longer than the asset 
life, which means an infeasible investment.  

B. Impact on Loss of Life Risk 

Risk matrix is a common method used for qualitative risk 
analysis [18]. Risk matrix is used in this study to visualize the 
risk of the loss of life of the transformer. The category of 

 
Figure 3. Predicted and real-time load. 

 
Figure 4. Predicted and real-time PV generation. 

 
Figure 5. BESS energy exchange with/without considering 

transformer loss of life mitigation. 

 

 
Figure 6. Annual profit for different scenarios. 



probability of occurrence of a loading level against the 
category of severity of loss of life are the two main factors 
that form the risk matrix. Risk levels are defined as “Low” 
(L), “Medium” (M), “High” (H), and “Extreme” (EX). FEQA, 
explained in the Appendix, is employed as the measure to 
quantify the severity of the event.  

As discussed in [19], the qualitative definitions of 
probability and severity are listed in Table III. In this table, 
P(e) is the probability of an event. The FEQA values are 
calculated hourly. The temperature rise of the transformer is 
the basis for calculating the ranges shown in this table. To 
perform these calculations, the associated FAA for each 
temperature rise is calculated using (30), and FEQA is obtained 
by employing (31). Probability is also categorized into five 
different categories. Table IV illustrates the risk matrix of 
transformer loss of life.  

TABLE III.  PROBABILITY AND SEVERITY DEFINITIONS 

Probability Severity 

Condition Range Condition Range 

Rare ( ) 10%p e   Insignificant 0.6EQAF   

Occasional 10% ( ) 40%p e   Normal 0.6 1EQAF   

Probable 40% ( ) 60%p e   Stress 1 4EQAF   

Frequent 60% ( ) 90%p e   Critical 4 15EQAF   

Likely 90% ( )p e  Catastrophic 15 EQAF  

TABLE IV.  RISK MATRIX FOR TRANSFORMER LOSS OF LIFE 

Probability 
Severity 

Insignificant Normal Critical Severe Catastrophic 

Rare L L L L L 

Occasional L L L M M 

Probable M M M H H 

Frequent H H H EX EX 

Likely EX EX EX EX EX 

The risk of loss of life is shown in Fig. 8. As can be seen 
from this figure, a high penetration of EVs (scenario b) will 
increase the loss of life for a transformer, which was not a risk 
until the presence of EVs. In addition, the impact of PV in 
mitigating this risk is negligible (scenario c). The results for 
scenarios d and f illustrate that by management based on price 
only, for some cases, not only isn’t the loss of life mitigated, 
but it also has a negative impact and increases the risk. The 
results for scenarios e and g can be used to shed light on the 
fact that the risk for the transformer can be significantly 

reduced by using BESS with the proposed 
charging/discharging management approach. A comparison 
of scenarios e and g shows that PV generation in coordination 
with BESS is also effective for risk mitigation. However, 
according to Fig. 8, owing to the PV system’s price, its 
economic impact is not enough to make it more profitable. For 
the scenarios where the investment produces a good return, the 
utility company benefits. Hence, utility companies should be 
investors, and this can be done by developing and providing 
rebates and other incentive programs to motivate consumers 
to deploy these resources. 

VI. CONCLUSION 

A coordination strategy to optimally schedule the 
charging/discharging of the stationary battery energy storage 
is proposed. Use cases for different scenarios are studied, and 
economic and risk assessments are performed to evaluate the 
feasibility and effectiveness of the proposed approach. The 
key findings of this study are as follows. 

 The proposed optimization approach for managing 
BESS charging/discharging is essential for making 
the investment in BESS profitable.  

 The benefit of including transformer loss of life in 
BESS charging/discharging management justifies 
making BESS a viable investment.  

 Proper sizing of the BESS is essential to making the 
system more profitable.  

 Impact of PV generation without the support of 
BESS is relatively low. 

APPENDIX 

The hottest spot temperature (HST) is the main factor 
affecting the insulation life. The HST is obtained using (20).  
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Figure 7. Payback period for different scenarios. 

 

Figure 8. BESS energy exchange with/without considering transformer 

loss of life mitigation. 



In (23) and (24), n and m are determined by the 
transformer structure and type, and are derived empirically. 
FAA is the aging acceleration factor, and FEQA is the equivalent 
aging factor, which are shown in (25) and (26) [17].  
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Finally, using (30) and (31), the loss of life is quantified as 
shown in (32): 

 
              (27)
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