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Abstract—With an increasingly wider application of Phasor 

Measurement Units (PMUs), the accuracy of phasor parameter 

estimation has become one of the major concerns in related re-

search. The accuracy of phasor parameter estimation is closely 

associated with the accuracy of waveform model representation. 

The most commonly used waveform models in literature are Fou-

rier models, and Taylor polynomial models, which are the back-

bones of frequency-domain and time-domain phasor estimation 

approaches, respectively. Usually, neither solution alone is capa-

ble of producing satisfactory results, despite various improve-

ment strategies. This paper proposes a novel method for hybridi-

zation of existing Fourier and polynomial fitting-based estimation 

methods. The framework is introduced so that the merits from 

multiple algorithms can be leveraged without designing a com-

pletely new algorithm. Fourier method and Taylor expansion 

method are selected to demonstrate this approach. Both theoreti-

cal derivation and simulation results show that the proposed 

framework effectively integrates the benefits from both algo-

rithms to achieve sufficient accuracy. 

Index Terms—Algorithm hybridization, hybrid method, parame-

ter estimation, phasor measurement, power system measurement 

I. INTRODUCTION 

Mostly recently, synchronized phasor measurement tech-
nology has gained wide acknowledgement and growing invest-
ment, and it has shown its benefits in power system monitoring 
in both transmission and distribution systems [1]-[7]. 

Phasor representation describes input waveforms within a 
short observation window with three parameters: amplitude, 
phase angle, and frequency. The definition of phasor is well 
known and in the USA usually assumes 60Hz operating fre-
quency. Dynamic phasors, on the other hand, as a relatively new 
definition, was proposed in [8], and is recognized in subsequent 
IEEE standards [9]. Unlike static phasors, dynamic phasor as-
sumes the waveform parameters may change over the length of 
an observation window. As a result, each time instant in a data 
window is theoretically associated with a distinct phasor value. 
Most recently, dynamic phasor modeling is adopted in the cal-
culation of phasor parameters.  

Phasor estimation methods are assumed to be associated 
with a predetermined waveform model with unknown parame-
ters. Phasor parameters are thereafter calculated using the esti-
mated waveform features. Most commonly, phasor parameters 
can be estimated using Fourier methods. For example, Discrete 
Fourier Transform (DFT) [10]. Fourier methods interpret input 
waveform as a linear combination of sinusoidal waves at differ-
ent frequencies, and each sinusoidal wave is in steady-state, in-
dicating constant amplitude and frequency [11]. As a result, 
Fourier methods only produce ideal results when the assumed 
frequency composition fits actual waveform frequency profile. 
Otherwise, frequency leakage occurs and phasors cannot be ac-
curately estimated [12]. Various efforts, such as interpolated 
DFT (IpDFT) method are designed to improve traditional DFT 
method by compensating frequency leakage [13]. Those afore-
mentioned Fourier-based methods are sometimes categorized 
as “frequency-domain” methods. 

The major caveat in Fourier-based methods is the assump-
tion that waveform parameters remain constant during an ob-
servation window, which inevitably introduces large error when 
there are variations in waveform amplitude and frequency. The 
estimation errors are alleviated by approximating the dynamic 
features in waveforms using time-domain polynomial expan-
sion [14,15]. This strategy can effectively model slow transients 
such as amplitude variations, but fails to consider abrupt 
changes and harmonics. 

A model that integrates both slow transients and multifre-
quency features attempted to solve this problem. This method 
models harmonic components in Fourier methods using Taylor 
expansion as well, and therefore, are named “Taylor-Fourier” 
transforms [16]-[18]. This feasible yet complicated model usu-
ally leads to a fairly large size fitting matrix, and therefore, is 
usually expensive to compute. 

In this paper, a novel framework to hybridize the aforemen-
tioned Fourier methods and time-domain methods is proposed. 
The hybridization can effectively integrate the benefits of both 
Fourier and Taylor expansion methods without significant com-
putational burden.  
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The rest of the paper is organized as follows. Section II clar-
ifies the problem and gives the framework for algorithm hybrid-
ization. Methodology of hybridization is introduction in Section 
III, where two strategies are introduced. The proposed frame-
work is tested in Section IV, and conclusions are given in Sec-
tion V. 

II. PROBLEM STATEMENT AND PROPOSED SOLUTION 

A. Fourier Method and Taylor-Fourier Method Revisited 

According to IEEE Standard [10], power system waveform 
can be expressed in (1): 

𝑥1(𝑡) = 𝑎(𝑡) ∙ cos [2𝜋𝑓0𝑡 + 2𝜋 ∫ ∆𝑓(𝑡) d𝑡 + 𝜙0] 

= 𝑎(𝑡) ∙ cos[2𝜋𝑓0𝑡 + 𝜙(𝑡)] 
(1) 

where a(t), f0, 𝜙0, Δf(t), 𝜙(t) denotes instantaneous amplitude, 
nominal frequency, initial phase angle, instantaneous frequency 
deviation, and instantaneous phase angle, respectively. 

As a common practice in time domain methods [14,15], (1) 
can be expanded as: 

𝑥1(𝑡) = 𝑞(𝑡) cos(2𝜋𝑓0𝑡 ) + 𝑟(𝑡) sin(2𝜋𝑓0𝑡 ) (2) 

where q(t) ≜ a(t) cos[𝜙(t)], r(t) ≜ -a(t) sin[𝜙(t)]. 

Note that (1) reflects the slow variations on f0 component, 
represented by a(t) and 𝜙(t) terms, but does not take into ac-
count any harmonic components. This practice is reasonable 
since harmonic components are not of interested and should al-
ways be eliminated. 

For the discussion in the paper, (2) is rewritten so that har-
monic components are reflected: 

𝑥(𝑡) = 𝑥1(𝑡) + ∑ ℎ(𝑡; 𝑘, 𝒂)𝐾
𝑘=2   (3) 

where h(k,a;t) reflects harmonic terms, k is harmonic order, a is 
a vector showing the harmonic characteristics, such as ampli-
tude, phase angle, t is time.  

One common process to treat q(t) and r(t) in (2) is approxi-
mation using polynomials [8], shown in (4): 

𝑞(𝑡) = ∑ 𝑐𝑚𝑃(𝑡; 𝑚)𝑀−1
𝑚=0 ; 𝑟(𝑡) = ∑ 𝑠𝑚𝑃(𝑡; 𝑚)𝑀−1

𝑚=0   (4) 

where m is the order of polynomial P(t;m), M is the number of 
terms in the approximation. Most cases in literature use M = 3. 

If we rewrite (3), we have: 

𝑥(𝑡) = ∑ 𝑐𝑚𝑃(𝑡; 𝑚)𝑀−1
𝑚=0 ∙ cos(2𝜋𝑓0𝑡 ) +

∑ 𝑠𝑚𝑃(𝑡; 𝑚)𝑀−1
𝑚=0 ∙ sin(2𝜋𝑓0𝑡 ) + ∑ ℎ(𝑡; 𝑘, 𝒂)𝐾

𝑘=2   
(5) 

In polynomial methods, harmonic terms ∑ ℎ(𝑡; 𝑘, 𝒂)𝐾
𝑘=2  are 

neglected. In DFT-based methods. Typically M is set to 1, re-
sulting in the commonly known spectrum representation. Con-
sequently, polynomial methods are susceptible to harmonic in-
filtration, whereas DFT-based methods cannot accurately track 
the slow dynamics in input waveforms. 

A hybridization framework is designed to integrate poly-
nomial methods and DFT method so that the resultant algo-

rithm is capable of rejecting harmonics and tracking slow var-
ying transients at the same time. The framework is shown in 
block diagram as Fig. 1. 

 

Instead of directly estimating phasor parameters, the pro-
posed framework acknowledges that neither algorithm alone 
will yield satisfactory results. Algorithm A in this framework is 
leveraged as a filter with which some of the undesired features 
are removed from the input. The principle is, when the recon-
structed waveform x′ is a desirable replica of input waveform x, 
the same output from Algorithm A (filter) should be expected. 
In this paper, candidate methods from either frequency domain 
or time domain are selected for a simple demonstration of the 
proposed framework. 

III. ALGORITHM HYBRIDIZATION METHODOLOGY 

In this section, hybridization of DFT [10] and monomial fit-
ting method [8] is demonstrated. In order to demonstrate that 
the framework is capable of modeling slow varying transients 
as well as rejecting harmonics, the “true” input waveform in (3) 
is rewritten as: 

𝑥(𝒕) = 𝑓(𝒕) + ℎ(𝒕) (6) 

where bold font represents vector, t represents time, f(t) is the 
sinusoidal waveform with varying envelope, modeled with (2), 
h(t) is the harmonic term.  

A. Monomial Fitting Method is Used for Reconstruction 

In monomial fitting method [8], P(t;m) = tm, m = 0,1,2. Ex-
panding input waveform at the center of observation window, 
the reconstructed waveform can be expressed as: 

𝑥′(𝒕) ≔ 𝐻𝒄 (7) 

where,  

𝐻 = [𝜸𝟎, 𝜹𝟎, 𝜸𝟏, 𝜹𝟏, 𝜸𝟐, 𝜹𝟐] 

𝜸𝒊 ≔ (𝒕 − 𝑡𝑐)𝑖 ∙ cos(2𝜋𝑓0𝒕) 

𝜹𝒊 ≔ −(𝒕 − 𝑡𝑐)𝑖 ∙ sin(2𝜋𝑓0𝒕) 

𝒄 ≔ [𝑐0, 𝑠0, 𝑐1, 𝑠1, 𝑐2, 𝑠2]𝑇 

(8) 

where tc represents the center of observation window, (*)T is 
transpose operation. 

Monomial fitting method represented in (7) and (8) captures 
the slow varying dynamics in waveform envelopes with high 
accuracy, and therefore, we may assume f(t)≡x′(t)=Hc with ac-
ceptable fitting error. On the other hand, h(t) term can be fil-
tered out using Algorithm A (DFT in this case). Therefore, if 
waveform x′(t) contains all the desired information in a partic-
ular application, using Algorithm A to filter either waveform 
x(t) or waveform x′(t) should yield the same results.  

 
Figure 1.  Proposed Hybridization Framework for two Algorithms 



For Algorithm A, DFT calculation can be defined by: X(k) 
= Wx(t), where X(k) is the kth harmonic component, W is the 
DFT matrix, defined as: 𝑊𝑚,𝑛 = 1

√𝑁
𝜔𝑚𝑛 , where m,n = 

0,1,2,…,N-1, j ≡ √−1, 𝜔≡e-j2𝜋/N, N is the number of samples 
in an observation window. 

From the mathematical expression, it can be seen that each 
row of matrix W extracts one frequency component from input 
waveform. Due to the restriction of Nyquist theorem, up to half 
the sampling frequency can be extracted, the positive and neg-
ative images are actually complex conjugate pairs. Matrix W 
can be rearranged as shown in (9): 

𝑊 = [
𝐴

𝑊′] 

𝐴 =
1

√𝑁
[

1 𝜔𝑝
𝜔2𝑝 ⋯ 𝜔(𝑁−1)𝑝

1 𝜔𝑁−𝑝
𝜔2(𝑁−𝑝) ⋯ 𝜔(𝑁−1)(𝑁−𝑝)

] 

(9) 

where p is the number of nominal cycles in an observation win-
dow. Since the only frequency components of interest are 
±60Hz (depending on the length of observation window, ±60Hz 
may corresponds to particular harmonics), only two rows asso-
ciated with ±60Hz of matrix W are used, stored in A.  

Applying Fourier analysis W on x(t): 

𝑊𝑥(𝒕) = [
𝐴

𝑊′] [𝑓(𝒕) + ℎ(𝒕)] = [
𝐴𝑓(𝒕) + 𝐴ℎ(𝒕)

𝑊′𝑓(𝒕) + 𝑊′ℎ(𝒕)
] (10) 

The expression Ax(t)=Af(t)+Ah(t) yields the Fourier spec-
trum components of ±60Hz, which are in fact, complex conju-
gate. Since h(t) does not contain any ±60Hz components, 
Ah(t)≡0. For the sake of simplicity, only ±60Hz component 
will be analyzed. As a result, matrix A instead of W is used for 
Fourier analysis.  

As discussed before, Fourier analysis is performed on both 
the original waveform x(t) and the reconstructed waveform x´(t), 
and the results should be the same when reconstruction is as-
sumed to be accurate. Thus, the following simple identity holds. 

𝐴𝑥′(𝒕) = 𝐴𝐻𝒄 ≅ 𝐴𝑥(𝒕) = 𝐴𝑓(𝒕) ≔ 𝒃 (11) 

where A is the DFT matrix extracting real and imaginary parts 
of ±60Hz components, H is defined in (7) and (8), x is input 
waveform sample vector, b is the equivalent real and imaginary 
parts of ±60Hz complex conjugate components, c is the un-
known vector of interest. 

Eq. (11) is the theoretical justification of proposed hybrid 
method where DFT is essentially used to reject harmonics. The 
same logic can also be applied when DFT is used as reconstruc-
tion function, as discussed in the following section. 

B. DFT is Used for Reconstruction 

It should be noted that DFT is a curve fitting method as well, 
where the basis vectors are in fact harmonic components. 
Therefore, the formulation of this scheme should be essentially 
the same as in Section A.  

Consider reconstructed waveform x′(t) with three frequency 
components, shown in (12): 

𝑥′(𝒕) ≔ 𝑀𝒄 (12) 

where, 

𝑀 = [𝒎𝟎, 𝒏𝟎, 𝒎𝟏, 𝒏𝟏, 𝒎𝟐, 𝒏𝟐] 
𝒎𝒊 ≔ cos(2𝜋𝑓𝑖𝒕) 

𝒏𝒊 ≔ −sin(2𝜋𝑓𝑖𝒕) 

𝒄 ≔ [𝑐0, 𝑠0, 𝑐1, 𝑠1, 𝑐2, 𝑠2]𝑇 

(13) 

where fi are pre-selected frequencies that can be the output of 
spectrum analysis of input waveform. The case of three fre-
quency components are selected here as an example. Polyno-
mial fitting method in (8) is used as the filtering algorithm. 

Similarly, we have: 

𝒅 ≔ 𝐻+𝑥(𝒕) ≅ 𝐻+𝑀𝒄 (14) 

where (H)+≔(HTH)-1HT denotes pseudo-inverse. Note that the 
column space of H is incomplete, since limited terms are used 
for expansion. 

To demonstrate how to improve the accuracy of (14), an 
analogous example in three-dimension is illustrated, shown in 
Fig. 2. Assume vector a (blue arrow) is the “true” waveform 
vector in 3-D, which is practically observed and thus approxi-
mated in 2-D space 𝒮=span{i,j}. This is analogous to approxi-
mating a waveform with limited Taylor series terms, as shown 
in (7). The effect of neglecting the rest of the basis in a complete 
space is discussed. 

Denote the neglected base vector as k1 (red arrow), then the 
accurate projection of vector a should be: a ={i, j, k1}•(i1,j1,k1)T. 
When least square is used, an orthogonal complementary vector 
of 𝒮, denoted as k2, is assumed instead, and the resultant pro-
jection would be: a ={i, j, k2}•(i2,j2,k2)T. Besides the error from 
vector space truncation when forming H matrix, more errors are 
introduced when utilizing a non-orthogonal fitting vector space. 

 

As a result, it is important to find a vector space whose com-
plementary space is orthogonal to it, and has the same column 
space as H. This is effectively done by QR factorization, ex-
pressed in (15).  

𝐻 = 𝑄𝑅 = [�̂� ⋮ 𝑄2] [�̂�
𝟎

] (15) 

where matrix �̂� and H have the same column space, which is 
orthogonal to the column space of matrix Q2, and Q-1=QT. 

From this point, matrix �̂� will be used instead of H.  

Rewrite (14), since 

 
Figure 2.  Illustration of Least Square Approximation Error 



𝑥(𝒕) = 𝐻𝒅 = [�̂�, 𝑄2] [�̂�
𝟎

] 𝒅 = [�̂�, 𝑄2] [�̂�𝒅
𝟎

] (15) 

Therefore, 

[�̂�𝒅
𝟎

] = ([𝑄,̂ 𝑄2])−1𝑥(𝒕) = ([�̂�, 𝑄2])𝑇𝑥(𝒕) = [
�̂�𝑇

𝑄2
𝑇] 𝑥(𝒕) (16) 

Neglecting orthogonal complementary subspace Q2, and re-
write (14): 

�̂�𝒅 = �̂�𝑇𝑥(𝒕) = �̂�𝑇𝑀𝒄 (17) 

Note that vector d is implicit, and does not need to be cal-
culated. By utilizing QR factorization of fitting matrix H, extra 
approximation error from least square calculation is avoided. 

IV. IMPLEMENTATION AND SIMULATION ANALYSIS 

A. Algorithm Implementation 

In order to improve estimation accuracy, an observation 
window longer than one cycle is used. The whole observation 
window is further truncated into several overlapping windows 
each with the length of one cycle. The number of overlapping 
windows depends on the number of terms of approximation. To 
balance the known and unknown parameters in (8), at least three 
overlapping windows with selected hop size should be used. 
The assumption is that in the span of few extra samples, the 
signal features for waveforms and harmonics will not change, 
which is reasonable for electromechanical dynamics given the 
large inertia of the electric generators.  

In this test, three overlapping window with length of one 
cycle and hop size of 5 samples are used, resulting in a total 
observation window of one cycle plus 10 samples. Note that for 
each observation window, matrix H will change slightly since 
the expansion is w.r.t to the center of window, according to (8). 

With this configuration, (11) and (17) can be rewritten as 
(18) and (19), respectively, and the final implementation 
scheme is shown in Fig. 3. 

 

[

𝐴𝐻1

𝐴𝐻2

𝐴𝐻3

] 𝒄 = 𝐴 [

𝑥1(𝒕)

𝑥2(𝒕)

𝑥3(𝒕)
] (18) 

[

𝑄1̂
𝑇

𝑀

𝑄2̂
𝑇

𝑀

𝑄2̂
𝑇

𝑀

] 𝒄 = [

𝑄1̂
𝑇

𝑥1(𝒕)

𝑄2̂
𝑇

𝑥2(𝒕)

𝑄3̂
𝑇

𝑥3(𝒕)

] (19) 

The final implementation procedures based on (18) and (19) 
are implemented in MATLAB for performance verification. 
The simulation results are shown in the following section. 

It is worth pointing out that once vector c is obtained, the 
original time domain waveform may be reconstructed using the 
model in Algorithm B.  

B. MATLAB Simulation Results and Evaluation 

Fourier method and monomial fitting method are used in the 
demonstration of algorithm hybridization framework. It is 
worth noting that since DFT and monomial methods respec-
tively excel at eliminating harmonics, and modeling slow am-
plitude transients, the hybridized method in this experiment 
may not suit other types of waveforms, such as frequency ramp-
ing. The hybridization principle proposed in the paper can be 
applied to the concatenation of more algorithms. In this test, 
waveforms containing both harmonics and slow amplitude tran-
sients are used as test waveforms. The sampling frequency is 
6kHz, and hop size is 5 samples. Since data window length is 
one cycle plus 10 samples. 10% harmonic level is used. The 
magnitude errors shown are normalized. 

1) Accuracy Evaluation Criteria 
In most cases, phasor parameters need to be calculated us-

ing vector c. The complex domain quantities are usually asso-
ciated with one single timestamp in an observation window, and 
a translation from phasor parameter calculation accuracy re-
quirement to the requirement on signal parameter estimation is 
needed. Since waveform measurement magnitudes are the only 
parameter of interest from time domain waveforms, this paper 
only concerns with the magnitude error. Citing synchrophasor 
standards, the relative error requirement for waveform estima-
tion at any time instant should be ten times higher than the TVE% 
requirement of synchrophasor, i.e. 0.1%. 

2) Strategy 1: Monomial Fitting Method for 

Reconstruction:  
In this case, slow transients are modeled directly while DFT 

is used to filter out harmonics. The results are shown in Table 
I. 

TABLE I.  WAVEFORM APPROXIMATION ACCURACY FOR STRATEGY 1 

Largest Absolute 

Magnitude Error (%) 
fAM = 1Hz fAM = 2Hz fAM = 5Hz 

2nd Harmonic 4.2×10-5% 6.5×10-4% 2×10-2% 

5th Harmonic 4.2×10-5% 6.5×10-4% 2×10-2% 

10th Harmonic 4.2×10-5% 6.5×10-4% 2×10-2% 

30th Harmonic 4.2×10-5% 6.5×10-4% 2×10-2% 

50th Harmonic 4.2×10-5% 6.5×10-4% 2×10-2% 

It can be observed that at a certain amplitude modulation 
frequency level, the accuracy is not affected by harmonic order, 
which is expected since the harmonic components are filtered 
out in the Fourier method. The estimation errors are only from 
curve fitting procedure. Adding more terms in (8) may improve 
the accuracy, but may also cause overfitting problem, which is 
not elaborated in this paper. 

3) Strategy 2: Fourier Method for Reconstruction:  
In this simulation, besides N DFT harmonic components, 

two extra frequencies, 55Hz, 65Hz, are added to model the side-
bands from amplitude modulation. The slow varying transients 
are further modeled in six monomial terms shown in (14). The 
results are shown in Table II. 

 

 
Figure 3.  Illustration of Overlapping Windows and Hop Size 



TABLE II.  WAVEFORM APPROXIMATION ACCURACY FOR STRATEGY 2 

Largest Absolute 

Magnitude Error (%) 
2nd Har-

monic 

13th Har-

monic 

35th Har-

monic 

fAM = 1Hz 1.6×10-2% 5×10-3% 5×10-3% 

fAM = 2.3Hz 6×10-2% 2×10-2% 2×10-2% 

fAM = 3.4Hz 0.1×10-2% 2×10-2% 2×10-2% 

fAM = 4.5Hz 5×10-2% 1×10-2% 1×10-2% 

fAM = 5Hz 0 0 0 

Since harmonics are still completely filtered out, the estima-
tion errors come from amplitude modulation sidebands. Be-
cause 55Hz and 65Hz only exactly model the sidebands at fAM 
= 5Hz, estimation error cannot be completely eliminated other-
wise. To alleviate the effect from sidebands, more frequencies 
in the vicinity of 60Hz can be potentially added in the Fourier 
model. 

V. CONCLUSION 

In this paper, a hybridization framework of existing phasor 
parameter calculation methods is proposed. The propose 
method offers a novel perspective of designing phasor parame-
ter estimation algorithms by integrating the advantages of ex-
isting algorithms. The paper contributions are summarized as 
follows: 

 To demonstrate the proposed hybridization rationale, Fou-
rier method (DFT) and monomial fitting method are se-
lected and hybridized. 

 Two hybridization strategies are tested, depending on the al-
gorithm chosen as the reconstruction algorithm. Both strat-
egies are tested with theoretical mixed amplitude modula-
tion and harmonics waveforms in MATLAB. 

 The test results show that either proposed strategy is able to 
accurately approximate the original waveform by simulta-
neously suppressing harmonic components and modelling 
amplitude transients. The source of errors is analyzed. 

 Theoretically, more algorithms can be concatenated and hy-
bridized as long as the algorithms of interest can be written 
in a linear matrix formulation. Ultimately, the proposed 
framework dramatically reduces difficulty and improve the 
efficiency of algorithm design. 
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