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Abstract—Distribution Transformer (DT) is an integral component of a distribution network. Electric utilities have invested 

efforts in reducing DTs failure rates. This paper presents a method for prediction of probability of DT failure by analyzing a 

correlation between weather data and historical DT failures data. Logistic regression prediction model is used in order to 

predict DT failure, and to extract the correlation between parameters of weather and DT failure. Accuracy of prediction is 

reliable, which is presented using evaluation metrics. This method not only has a vital significance for the maintenance of 

DTs, but also improves the economic efficiency and reliability of distribution network operation. 

Index Terms— distribution transformer, failure, logistic regression, prediction model, weather data 

 

I. INTRODUCTION 

The Distribution Transformer (DT) is a vital link in the chain of power apparatus supplying electric power to the 

customers. DT failures have a major financial impact on both utility company and customers. The utility companies 

invest large funds annually for maintenance of distribution transformers. Predictions of transformer failure rates is 

regularly assessed and DTs may be replaced according to set of criteria during the evaluation. However, there is still a 

limited capability to mitigate DT failures caused by weather. A practical utility example given in Table 1 illustrates that 

the rate of DT failures caused by weather is still high and presents the second highest cause after aging, also affected by 

weather.  

The factors of DT failure consist of aging, weather, overloading, corrosion, out of maintenance, animal contact, 

installment error, people’s error, etc. Among the causes, aging, corrosion and overloading constitute 47% (Table 1), 

which combined is the largest reason. In order to decrease this failure rate caused by aging, corrosion and overloading, 

utility company implements lots of methods including electric measurement methods for electrical insulation tests [1], 

Dissolved Gas Analysis (DGA) [1], Oil and paper tests and thermography for chemical and physical tests [1]. 

 
TABLE 1. THE CAUSES OF DT FAILURE IN JEONLLANAMDO OF SOUTH KOREA (2011-2018) 

Cause The number Rate [%] 
Aging 337 27.2 

Weather 333 26.9 

Corrosion 155 12.5 

Animal contact 145 11.7 
Out of maintenance 92 7.4 

Overloading 87 7.0 

Object contact 25 2.0 
Tree 18 1.5 

People error 16 1.3 

Manufacture error 15 1.2 

Flooding 13 1.0 
Installment error 3 0.2 

Fire 1 0.1 

Total 1,240 100 

 

 

While there are a quite a few papers that study the causes of DT failure, very limited research is done on prediction 

of weather-related distribution transformer failures. One of them [2] analyzes the root causes of failure, overvoltage and 

overloading, as well as the surge affecting the core and winding failure. The other study [3] shows the main causes 

(Tree, animal, contamination, nature disaster, and human) according to geographical regions. According to study about 

DT failure root causes in India, the reasons for failure are overload, lighting surge, moisture, and high voltage [4]. 

However, it does not deal with weather impact as a principal cause. Such analysis focuses on lightning-induced voltages 

and correlation between LV surge arresters and grounding resistance. 

The utility companies need a practical method to predict weather-related failures and implement efficient methods 

for mitigation. Our paper provides such an approach by using logistic regression to analyze weather-related failures. 

The main advantage is that it can be used as an input to the replacement decision-making hence alleviating the limits of 

existing maintenance methods. It separates weather parameters causing failure, and expresses them with numerical 

values. In addition, it has high accuracy evaluated using objective evaluation metric. 

The paper is organized as follows: Section II discusses the problem formulation. Section III demonstrates the data 



source and processing. Section IV explains prediction model, and Section V describes evaluation. Section VI analyzes 

result, and Section VII contains conclusions. 

 

II. PROBLEM FORMULATION 

Power utility company are aware that there is a correlation between weather and DT failure according to their field 

experiences. However, it is typically not known which weather parameter is most relevant among different parameters, 

and such correlation is not quantified. In order to verify the correlation between weather parameters and failure, it is 

necessary to collect historical weather and DT failure data. Extracting DT failure data is the first step. In our case we are 

considering data from South Korea. The area where failure occurred the most in South Korea is selected and events are 

sorted by the dates of failure and areas. The next step is matching the areas of failure and area where weather stations 

are located. The weather stations are selected at one of the closest locations.  

The last step is extracting the historical weather data according to dates and area of DT failures. The weather 

station provides weather data about Lightning, Average Temperature [℉] (AT), Highest Temperature [℉] (HT), 

Relative Humidity [%] (RH), Maximum Wind Speed [m/s] (MWS), Wind Gust [m/s] (WG), and Precipitation (mm) 

(PT). The information of DT failure and historical weather data is processed by using logistic regression. The goal of 

the logistic regression implemented in this study is prediction of future failures. We calculate coefficients of correlation 

between parameters and failure and apply to the test set next. Through this method, the degree of correlation between 

parameters of weather data and DT failure is measured and the probability of each failure is calculated. 

 

III. DATA SOURCE  

We studied step down transformers (22.9KV-220V) used in the distribution sectors in South Korea (see Table 2). 

The 237 events comprise the data set and the predictor variables (see Table 1) are used for our study for modeling 

purpose. We also applied preprocessing steps to extract the useful features and prepare data for prediction algorithm. 

We collected the data for modeling outage events used for prediction and analysis starting from year 2012 up to year 

2018. Before applying the logistic regression, let us go through our adjusted modeling data in simple descriptive 

statistical measures. The historical outages are extracted for five causes; lighting, tree contact, snow, rain, and dust. 

 
TABLE 2. DISTRIBUTION FACILITIES IN JEONLLANAM-DO (UNIT:1000) [9] 

 

 
 

Figure 1. JeonllaNam-do area [8] 

Transformer Protective Devices 

Bank Number Capacity 

(kVA) 

Breaker Equipment COS 

104 243 9,252 12 1.4 72 



 

The region is JeonllaNam-do in South Korea and the size of the region is 4,729mi², the popularity is 190 million 

and there are 842,668 households. It consists of 22 cities as shown in Fig. 1, which account for 65% of the entire land 

area. The JeonllaNam-do area ranks first in the number of DTs in Korea as shown Fig 3. The area has more countryside 

and seaside than other states, therefore it is more vulnerable to weather impacts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 2. The comparison of the number of DT in Korea [8] 

  

From 1/1/2011 to 11/2/2018 the number of total outages is 1,025 and failures caused by weather account for 237, 

which constitutes 24%. The causes of all outages include lightning, three contact, snow, aging, overload, bird contact, 

people fault, installation fault, manufacture fault, corrosion, fire, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Distribution facilities in Korea [8] 

 

The data for the logistic regression is extracted from outages caused by weather; lighting, rain, snow, dust. Aging 

and overload are related to temperature; however, those are not direct causes, thus these are excluded. The weather 

parameters that are taken into account are shown in Table 3. 



 
TABLE 3. PARAMETERS OF WEATHER DATA 

 

 

The dates which have outages caused by weather are selected for Y=1 and the dates which don’t have any outages 

are presented as Y=0 and historical weather are extracted. 

 

IV. PREDICTION MODEL 

Logistic regression is used for modeling a binary response (i.e., success/fail) in many applications [10, 11]. This 

model estimates the probability of the response occurring P(X) = Pr (Y=1│X) through a linear function of explanatory 

variables X. In this study, it is natural that the response variable Y is a DT failure, i.e., 1 (failure) and 0 (no failure), and 

weather predictors like LT, AT, HT, RH, MWS, WG, PT are available for modeling logistic regression. Specifically, X 

is n × (p+1) design matrix where n is the number of observations and p is the number of weather predictors. Naturally, 

the number of coefficients is eight by seven predictors and an intercept. The corresponding coefficients β of predictors 

designate the effect of the weather predictors on the probability of DT failure. The basic intuition behind using 

maximum likelihood to fit a logistic regression model is as follows: we seek estimates such that the predicted 

probability of failure for each individual DT is most likely to agree with its observed failure. This intuition can be 

formalized using the mathematical Equations. (1), (2), and (3) as follows. 

   

                                                                                     (1) 

 

                                                               (2)    

 

                                                                                        (3)    

 

Once the coefficients in Eq. (3) have been estimated, the probability of failure is given by 

 

                                                                                    (4)  

 

V. EVALUATION  

 

A. Evaluation Metric and Effect of Predictors 

To evaluate logistic regression, Receiver Operating Characteristics (ROC) [12] graphs are useful for organizing 

classifiers and visualizing their performance. The Area Under Curve (AUC) [13] is used, and the estimated coefficients 

quantify the effect of weather on the probability of failure. AUC is the most popular metric for visualizing the 

performance and analyzing the coefficient serves as intuitive interpretation of the effects of predictors.   

To distinguish between the actual class and the predicted class, we use the labels Y, N for the class predictions 

produced by a model as shown Fig 4. 

 
Figure 4. Confusion matrix and common performance metrics [12] 

 

There are four possible cases. If the prediction is failure when real value is failure, it is true positive (tp), and if the 

prediction is failure when real value is no failure, it is false negative (fp). On the other hand, if the prediction is no 
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failure when real value is no failure, it is true negative, and if the prediction is no failure when real value is failure, it is 

false positive.   

The true positive rate of a classifier is estimated as      

 

                                    (5) 

 

The false positive (fp) rate of the classifier is estimated as 

 

                               (6) 

 

A ROC graph depicts relative tradeoffs between true positive and false positives. The ROC curve is a popular 

graphical method for simultaneously displaying the two types of errors for all possible thresholds. The AUC has an 

important statistical property. The overall performance of a classifier, which summarizes all possible thresholds, is 

given by the AUC. An ideal ROC curve will approach the top left corner, so the larger the AUC the better the classifier. 

Coefficients show how the corresponding predictors have an impact on an outcome by describing the magnitude. 

Seven weather predictors are showed in X-axis and magnitude of the corresponding coefficient values are represented 

in Y-axis. It shows which weather parameter has the largest effect on DT failure. 

 

B. Experimental setup 

All DT failures have their own failure number and date, and the failure data spans from 2011 to 2018. The weather 

data is correlated through the date and location of failure [14]. The historical DT failure data is divided into the testing 

and training sets. The total number of DT failure is 237, and 90% of the total is selected for the training set. The 

remaining 10% of the data is used for the testing sets for model estimates. There is total of 148 of no failure cases used. 

The probability of the occurrence of 385 weather data is represented as a result of logistic regression. When a 

probability of DT failure is lower than 0.5, we show Y=0, and when a probability is above 0.5, we assign Y=1. The 

degree of high temperature (HT) is classified into three temperature thresholds such as 82.4℉, 86℉, and 89.6℉ in order 

to make interpretation of HT coefficient precise. The basic loading of distribution transformer for a normal life 

expectancy is continuous loading under the operating condition in a constant 30°C (86℉) ambient temperature as 

discussed in [15]. 

 

VI. RESULTS 

 

The results are shown in Table 4. For the case of HT 82.4℉, 113 cases are predicted as no failure (i.e., Y=0), and 

47 cases show prediction that there will be a failure (i.e., Y=1). For the case of HT 86℉ and 89.6℉, 112 events and 111 

cases are predicted as no failure respectively. On the other hand, 190 cases and 183 cases have prediction of failure (see 

Table 4). The accuracy of prediction is 0.7995 by calculating (113+190)/384=0.789. In the case of HT 86℉ and 89.6℉, 

the accuracy of prediction =0.786((112+190)/384) and 0.766((111+183)/384) respectfully. For HT 82.4℉, the accuracy 

of prediction of probability is the highest.  

 

 
TABLE 4. EVENT VS. PREDICTION OF FAILURE 

 

Event Failure (Y/N) Prediction 

Y=0 Y=1 

HT 86℉ or below Y=0 113 47 

Y=1 35 190 

HT 86℉ - 89.6℉ Y=0 112 47 

Y=1 36 190 

HT 89.6℉ or above Y=0 111 54 

Y=1 37 183 

 

 

The AUC is 0.796, 0.798 and 0.764 respectively as shown Fig 5, which means the result can be considered as very 

good. The AUC of HT 86℉ - 89.6℉ have the highest values (see Fig 5, b)). HT is divided by three groups (0/1) 

according to the temperature. We assume that probability of DT failure would increase by HT. Three HTs such as 86℉ 
or below, 86℉-89.6℉, and 89.6℉ or above are selected. For example, for a certain temperature below 86℉, the 

probability is 0 and if the temperature is above 86℉, the value is 1. 



   
 

a) HT: 86℉ or below b) HT: 86℉ - 89.6℉ c) HT: 89.6℉ or above 

Figure 5. ROC for classification 

 

The positive coefficient of the predictor indicates that the predictor increases the probability of DT failure, while 

the negative coefficient makes the probability of DT failure decrease. That is, predictor with the positive coefficient is 

the most relevant contributor to the failure, and predictor with the negative coefficient is the least relevant contributor to 

the failure. The positive coefficient is likely to have an effect on failure, and on the other hand, negative coefficient is 

less likely to have an influence on failure. The coefficients for DT failure shown in Table 5 and Fig 6, which are LI, AT, 

HT, RH, MWS and PT have all positive values. Lightning is the most influential coefficient, since it is the biggest one 

and HT is the second.  

 
TABLE 5. COEFFICIENT VALUES  

 

Degree of HT LI AT HT 

86℉ or below 1.7455 0.003565 0.21771 

86℉ - 89.6℉ 1.4329 0.007634 0.30125 

89.6℉ or above 1.3649 0.010839 0.78165 

 

RH MWS PT 

0.01176 0.13367 0.005994 

0.008571 0.0823 0.01289 

0.007447 0.060257 0.01922 

 
 

 
 

  

a) HT: 86℉ or below b) HT: 86℉ - 89.6℉ c) HT: 89.6℉ or above 

Figure 6. Coefficients value estimate 

 

We realize that lightning and higher temperature, especially HT 89.6℉ or above have the biggest effect on DT 

failure as shown Fig 6 c). For the coefficient value of HT, there is no huge differences between 86℉ and 89.6℉ from 

0.21771 to 0.30125 in Table 5. However, the value increases in 89.6℉ or above as 0.78165. The average Temperature 

(AT) has low relationship; however, it is positive. Therefore, in case AT is positive, HT coefficient turns into the 

important factor, which is in turn associated with higher probability of DT failure. On the other hand, RH, NWS, and 

PT have a low positive correlation. 



VII.  CONCLUSTION 

 

The paper describes a logistic regression prediction model of distribution transformers failure by using correlation 

of weather parameters. The main contribution of our study are as follows: The variety of weather predictors causing DT 

failure has been identified including Lightning, Average Temperature [℉], Highest Temperature [F], Relative Humidity 

[%], Maximum Wind Speed [m/s], Wind Gust [m/s], and Precipitation (mm).  

•    The logistic regression model has been used to calculate the probability of DT failure caused by weather.  

•    The prediction model shows high-level accuracy, where the average AUC is 0.78.  

•   The coefficient values estimate show that the weather predictors have positive value indicating the Lightning and 

HT being the most important factor which affect the DT failure. HT has more effect on failure when it reaches 

high temperature such as 89.6℉ or above.  

•   The approach is a promising step to predicting not only DT failure but also other outages of power network. 
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