
Power System Fundamental Frequency Estimation 

Using Unscented Kalman Filter 

Cheng Qian, Graduate Student Member, IEEE, Mladen Kezunovic, Life Fellow, IEEE 

  
Dept. of Electrical and Computer Engineering 

Texas A&M University, College Station 

College Station, TX, US 

peterqiancheng@tamu.edu, kezunov@ece.tamu.edu 

 

 
Abstract—Fundamental frequency is one of the most vital metrics 

of the power grid. Numerous frequency estimation techniques 

have been proposed, which are based on parameterization of de-

terministic signal models. Cautions should be taken since uncer-

tainties such as noise are common in raw waveform measure-

ments, and will propagate into estimation results. In order to mit-

igate the adverse impact of measurement noise, most recently, 

Kalman filter-based approaches were promoted, and are giving 

promising results. Nevertheless, conventional Kalman filter or ex-

tended Kalman filter have limited performance due to the high 

nonlinearity of the underlying state equations. In order to adapt 

to nonlinearity, this paper proposed a technique that leverages 

the Unscented Kalman Filter (UKF). The paper also introduces 

an approach that employs three-phase measurements to improve 

the overall frequency estimation accuracy. Simulation results 

show that the proposed UKF-based approach achieves extremely 

high fundamental frequency calculation accuracy despite severe 

noise interference. 

Index Terms—Frequency estimation, Kalman filter, uncertainty, 

unscented Kalman filter, power system measurement 

I. INTRODUCTION 

Fundamental frequency is one of most crucial indicators to 
assess the operating conditions of the power grids, as it is di-
rectly determined by the spinning speed of synchronous gener-
ators. Numerous control applications rely on the accurate pro-
vision of fundamental frequency, such as underfrequency pro-
tective relays [1], power system stabilizers (PSS) [2], and is-
landing detection [3]. 

A number of frequency estimation methods have been de-
signed, which employed a wide spectrum of signal pro-
cessing/control techniques, including phase-locked-loops 
(PLLs) [4], Fourier transforms [5], and curve-fitting approaches 
[6]. The aforementioned frequency estimation algorithms uti-
lize deterministic signal models, where uncertainties and noise 
terms are not represented, even though they are prevalent in raw 
power system waveform measurements. The uncertainties in 
waveform measurements will propagate through algorithms 
and reflect on the uncertainties in frequency estimation results.  

Most recently, statistical tools are employed so that the im-
pact of noise uncertainties can be effectively mitigated. Kalman 
filter is one of the most widely acclaimed techniques and has 
been leveraged in other areas of power system research, such as 
dynamic state estimation [7], harmonic parameter estimation 
[8], and frequency estimation [9]. Kalman filter was originally 
designed only for systems described by linear state equations. 
When the additive noise in waveform measurements is additive 
white Gaussian noise (AWGN), and system state equations are 
linear, Gaussianity is preserved through linear transforms. As a 
result, the propagation of AWGN in observations and states 
yields AWGN in further iterations, and Kalman filter is de-
signed to be optimal in terms of achieving minimum mean 
squared error (MMSE) [10].  

The frequency term in power waveforms, however, is em-
bedded in highly nonlinear sine or cosine functions. When the 
system state equation is nonlinear, the noise components in ob-
servations and states are no long Gaussian. To apply Kalman 
filter to systems characterized by nonlinear state equations, ex-
tended Kalman filter (EKF) [9],[11] was created. The notion of 
EKF is based upon linearizing nonlinear system equations at the 
working point using Taylor approximation, where only the first 
two linear terms are preserved. The efficacy of EKF depends 
on the level of nonlinearity of system equations around the 
working point. As a result, EKF is only adequately accurate 
when the system equations are almost linear around the realistic 
range of working points. For power system, this range is be-
tween 55Hz to 65Hz. As is later shown in Section II, the wave-
form equations are highly nonlinear around such range, making 
EKF ineffective. 

In order to complement the performance of EKF under 
highly nonlinear conditions, unscented Kalman filter (UKF) 
was proposed in 1997 [12], and later elaborated in [13]. UKF is 
based on unscented transform (UT), where the statistical char-
acteristics of the distribution after nonlinear transform are esti-
mated with higher accuracy than letting statistics propagate 
through linearized system equations, as is practiced in EKF. Pa-
per [14] introduced a UKF-based technique for fundamental 
frequency estimation using the instantaneous real and reactive 
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power equations. The assumption is that both voltage and cur-
rent waveform measurements conform to a sinusoidal form. In 
reality, however, current waveforms may be highly distorted, 
making the aforementioned technique highly unreliable.  

This paper proposes an alternative approach to estimating 
fundamental frequency using UKF, where only the waveform 
measurements are used. Simulation results show that the pro-
posed approach can achieve extremely high frequency estima-
tion accuracy even in the case of low signal-to-noise ratio 
(SNR). The rest of the paper is organized as follows: Section II 
discusses the system equations used in UKF; Section III intro-
duces the frequency estimation algorithm based on UKF; sim-
ulations are conducted in Section IV, and the results are ana-
lyzed; Conclusions are outline at the end. 

II. INSTANTANEOUS WAVEFORM MODELS 

Either single-phase or three-phase voltage waveform meas-
urements can be used in the proposed approach. Signal models 
in both cases are designed. 

A. Single-Phase Waveform Model 

The sinusoidal voltage waveforms can be denoted by: 

𝑥𝑘 = 𝐴 ∙ cos(𝜔𝑘∆𝑡 + 𝜙0) (1) 

where 𝐴 is amplitude, 𝜔 is angular frequency, 𝑘 is sample in-
dex, ∆𝑡 is sampling interval, and 𝜙0 is initial phase angle.  

Therefore, consecutive samples at time steps (𝑘 + 1) and 
(𝑘 + 2) can be expressed as: 

𝑥𝑘+1 = 𝐴 ∙ cos[𝜔(𝑘 + 1)∆𝑡 + 𝜙0] 
𝑥𝑘+2 = 𝐴 ∙ cos[𝜔(𝑘 + 2)∆𝑡 + 𝜙0] 

(2a) 

(2b) 

It can be proven that: 

𝑥𝑘+2 + 𝑥𝑘 = 2𝑥𝑘+1 ∙ cos(𝜔∆𝑡) (3) 

Equation (3) is the fundamental state update equation em-
ployed in paper [9].  

B. Three-Phase Waveform Model 

Electric power is transmitted through three-phase transmis-
sion system, with 120° electric phase angle displacement be-
tween any two phases. This phase angle displacement is deter-
mined by the symmetric design of synchronous generators, and 
thus always holds true.  

Denote phase A voltage as 𝑥𝑘, phase B voltage as 𝑦𝑘 , and 
phase C voltage as 𝑧𝑘. Then,  

𝑦𝑘 = 𝐴 ∙ cos (𝜔𝑘∆𝑡 + 𝜙0 −
2

3
𝜋) 

𝑧𝑘 = 𝐴 ∙ cos (𝜔𝑘∆𝑡 + 𝜙0 +
2

3
𝜋) 

(4a) 

(4b) 

It can be shown that 𝑦𝑘  can be conveniently expressed with 
phase A waveform measurements, shown in (5): 

𝑦𝑘 = 𝐴 ∙ cos(𝜔𝑘∆𝑡 + 𝜙0) cos (−
2

3
𝜋) 

−𝐴 ∙ sin(𝜔𝑘∆𝑡 + 𝜙0)sin(−
2

3
𝜋) 

(5) 

= 𝑥𝑘 cos (−
2

3
𝜋) +

𝑥𝑘cos(𝜔∆𝑡) − 𝑥𝑘−1
sin(𝜔∆𝑡)

sin (−
2

3
𝜋) 

Similarly, 

𝑧𝑘 = 𝑥𝑘 cos (
2

3
𝜋) +

𝑥𝑘cos(𝜔∆𝑡) − 𝑥𝑘−1
sin(𝜔∆𝑡)

sin (
2

3
𝜋) (6) 

Besides, similar to (3), for both phase B and phase C wave-
form samples: 

𝑦𝑘+2 + 𝑦𝑘 = 2𝑦𝑘+1 ∙ cos(𝜔∆𝑡) 
𝑧𝑘+2 + 𝑧𝑘 = 2𝑧𝑘+1 ∙ cos(𝜔∆𝑡) 

(7a) 

(7b) 

III. FUNDAMENTAL FREQUENCY ESTIMATION USING UKF 

In order to apply UKF in frequency estimation, waveform 
equations should be expressed as state equations, in which fre-
quency parameter is embedded. The selection of sigma points 
is also discussed in this section. 

A. Shortcomings of EKF Model and Approach 

From (3), frequency can be mathematically derived by tak-
ing the inverse of cosine function: 

𝑓 =
1

2𝜋∆𝑡
∙ cos−1 (

𝑥𝑘+2 + 𝑥𝑘
2𝑥𝑘+1

) (8) 

where 𝑓 is the instantaneous fundamental frequency in Hertz.  

When the sampling frequency of a field device is adequately 
high, the argument in the inverse cosine function is close to 1. 
Consequently, the working point of the nonlinear equation is at 
the most nonlinear part of the inverse cosine function. As a re-
sult, the EKF-based method introduced in [9] will incur large 
error.  

As previous discussed, UT can be used in this case to yield 
more realistic estimates in terms of the propagation of statistics 
(first two moments, in particular) of input variables through 
nonlinear transform [12]-[13].  

B. State-Space Representation  

In order to use Kalman filter-type techniques, the problem 
has to be represented in the form of state-space models. Choos-
ing the states and measurement variables as follows: 

𝑥1,𝑘 = 𝑥𝑘 , 𝑥2,𝑘 = 𝑥𝑘−1, 𝑥3,𝑘 = 𝜔Δ𝑡 

𝑦1,𝑘 = 𝑥𝑘 , 𝑦2,𝑘 = 𝑦𝑘 , 𝑦3,𝑘 = 𝑧𝑘 
(9) 

As a result, the state update equation and measurement in-
put equation can be expressed as: 

𝑥1,𝑘+1 = −𝑥2,𝑘 + 2𝑥1,𝑘cos(𝑥3,𝑘) 
(10a) 

 

𝑥2,𝑘+1 = 𝑥𝑘 = 𝑥1,𝑘 
(10b) 

 

𝑥3,𝑘+1 = 𝑥3,𝑘 (10c) 

𝑦1,𝑘+1 = 𝑥1,𝑘+1 (10d) 



𝑦2,𝑘+1

= 𝑥1,𝑘+1 cos (
2

3
𝜋)

−
𝑥1,𝑘+1 cos(𝑥3,𝑘+1) − 𝑥2,𝑘+1

sin(𝑥3,𝑘+1)
sin (

2

3
𝜋) 

(10e) 

𝑦3,𝑘+1

= 𝑥1,𝑘+1 cos (
2

3
𝜋)

+
𝑥1,𝑘+1 cos(𝑥3,𝑘+1) − 𝑥2,𝑘+1

sin(𝑥3,𝑘+1)
sin (

2

3
𝜋) 

(10f) 

 

Note that 𝑥3,𝑘 = 𝜔Δ𝑡 = 2𝜋𝑓Δ𝑡, where Δ𝑡 is the sampling 

interval. Therefore, frequency is estimated through: 

𝑓 =
𝑥3,𝑘
2𝜋Δ𝑡

 (11) 

When only single-phase measurements are available, (10a)-
(10d) should be used; when additional observations of the other 
two phases are present, (10e) and (10f) can be incorporated. 

C. Selection of Sigma Points and Their Propagation in State 

Equations 

In UKF, sigma points are a collection of samples from the 
original distribution, deterministically chosen in such a way that 
the first two moments of sigma points preserve the first two mo-
ments of the original distributions. The sigma points are then 
propagated to the new distribution through the nonlinear func-
tion, where the statistics of the new distribution can be calcu-
lated using the propagated sigma points. The selection of sigma 
points are done in the following way [12]-[14]: 

𝜒0 = �̅� 

𝜒𝑖 = �̅� + (√(𝑛 + 𝜆)𝑃𝑥𝑥)𝑖 , 𝑖 = 1,2, … , 𝑛 

𝜒𝑖+𝑛 = �̅� − (√(𝑛 + 𝜆)𝑃𝑥𝑥)𝑖 

(12) 

where 𝑛  is the number of states, 𝜆 = 𝛼2(𝑛 + 𝜅) , 

(√(𝑛 + 𝜆)𝑃𝑥𝑥)𝑖 is the ith column of the square root of matrix 

(𝑛 + 𝜆)𝑃𝑥𝑥 , and can be efficiently calculated using by Chole-
sky decomposition.  

The sigma points are then propagated through the nonlinear 
function 𝛾𝑖 = 𝑓(𝜒𝑖), where the first two moments of the new 
distribution can be calculated as follows: 

�̅� = ∑𝑊𝑖
(𝑚)

𝛾𝑖

2𝑛

𝑖=0

 (13a) 

𝑃𝑦𝑦 =∑𝑊𝑖
(𝑐)[(𝛾𝑖 − �̅�)(𝛾𝑖 − �̅�)𝑇]

2𝑛

𝑖=0

 (13b) 

where weights 𝑊𝑖
(𝑚)

 and 𝑊𝑖
(𝑐)

 are defined as follows: 

𝑊0
(𝑚)

=
𝜆

𝑛 + 𝜆
,𝑊0

(𝑐)
= 𝑊0

(𝑚)
+ (1 − 𝛼2 + 𝛽) (14a) 

𝑊𝑖
(𝑚)

= 𝑊𝑖
(𝑐)

=
1

2(𝑛 + 𝜆)
, 𝑖 = 1,2, … , 𝑛 (14b) 

In (12)-(14), factors 𝛼and 𝜅 are used to provide fine-tuning 
of the “spread” of sigma points around the mean 𝜒0 = �̅�. Pa-
rameter 𝛽 is used to incorporate information about higher mo-
ments of the original distribution. There is no uniform method 
to select sigma points, and the available approaches are de-
scribed in detail in [15]. 

IV. IMPLEMENTATION AND SIMULATIONS 

The proposed technique is implemented in MathWorks 
Simulink software. Sampling frequency is 6kHz. In order to 
evaluate the states defined in (10) at each time step, both EKF 
and UKF are used. Three sets of simulations are conducted to 
demonstrate better performance of UKF-based approach over 
EFK-based approach in the formulated frequency estimation 
problem: EKF using three-phase measurements, UKF using 
three-phase measurements, UKF using single-phase measure-
ment. The performance of the three strategies are evaluated 
through metrics including optimality/bias, and sensitivity to-
ward initial values. 

A. Test Scenarios and Evaluation Metrics 

To test the performance of the proposed approach in various 
power system operating conditions, both steady-state and dy-
namic-state waveforms are used in the simulation, including 
pure sinusoidal signals, steady-state signals with harmonic in-
filtration, amplitude-modulated signals, phase-modulated sig-
nals, and frequency ramping signals. Test signal parameters are 
determined based on IEEE standard [16]. AWGN is added to 
pure sinusoidal signals, where the SNR is either 20dB or 40dB. 
The SNR is defined as: 

SNR = 10 ∙ log10 (
𝜎signal
2

𝜎noise
2 ) = 20 ∙ log10 (

𝐴signal

𝐴noise

) (15) 

where 𝜎2  is the variance, 𝐴  is the root-mean-square (RMS) 
amplitude. Practically, 𝐴noise is the standard deviation of noise, 
i.e. 𝜎noise.  

As discussed before, since the system equation is highly 
nonlinear, neither EKF nor UKF will attain optimality, in terms 
of achieving MMSE solutions. This sub-optimality condition 
will result in bias between estimated fundamental frequency 
and “true” theoretical frequency. Besides, the initial conditions 
consist of current step sample, previous step sample, and angu-
lar increment over one sampling interval (proportional to angu-
lar frequency). Depending on the initial conditions for states, 
the nonlinearity of state equations may lead to undesired though 
mathematically valid solutions, if not causing divergence. Thus, 
the sensitivity to initial conditions should also be evaluated.  

B. Simulations with 40dB AWGN Input 

In this test scenario, 40dB SNR is associated with the signal 
uncertainty characterized by a standard deviation of 1% of the 
signal amplitude. The test signal is shown in Fig. 1(a) and (b).  

 Frequency estimation bias: 

Test results are shown in Table I. It can be observed that 
highly accurate frequency estimation results can be achieved by 



using either single-phase or three-phase waveform measure-
ments.  

TABLE I.   SUMMARY OF FREQUENCY ESTIMATION BIAS  

Case Details UKF-Single Phase UKF-Three Phase 

Steady-state 
unbalanced 

< 5×10-7 Hz < 5×10-7 Hz 

Steady-state 
harmonics 

< 5×10-7 Hz < 5×10-7 Hz 

Amplitude 
modulation 

< 5×10-7 Hz < 5×10-7 Hz 

Phase modulation < 5×10-7 Hz < 5×10-7 Hz 

Frequency ramping < 5×10-7 Hz < 5×10-7 Hz 

 Sensitivity to initial conditions: 

As aforementioned, state 𝑥3 is proportional to angular fre-
quency 𝜔 = 2𝜋𝑓 , and its initial value is set to be nominal. 
States 𝑥1 and 𝑥2 are related to instantaneous sample values, and 
cannot be predicted, and thus are set arbitrarily to 1p.u. In the 
test, the selected initial values may deviated from the “true” 
starting point of the system states in either frequency or ampli-
tude. Fundamental frequency of input test signal ranges from 
55Hz to 65Hz, with 1Hz increment. Besides, the amplitude de-
viation between selected initial conditions and “true” amplitude 
may be anywhere between -100% and 100%. EKF approach is 
tested as well to show the comparison. 

TABLE II.   SUMMARY OF SENSITIVITY TO INITIAL CONDITIONS 

Case Details EKF-Three Phase UKF-Three Phase 

Frequency deviation 

±1Hz to ±5Hz 
Converge Converge 

Amplitude deviation 
±50% 

Diverge Converge 

Amplitude deviation 

±25% 
Diverge Converge 

Amplitude deviation 

±10% 
Converge Converge 

 
As can be observed, EKF-based approach may diverge 

when the selected initial values deviate more than 25% off the 
true values. In practice, this essentially means that the conver-
gence depends on when the waveform samples are taken. There 
is at least 75% chance that EKF-based method may diverge. On 
the other hand, proposed UKF-based method will always con-
verge.  

C. Simulations with 20dB AWGN Input 

In this test case, 20dB SNR is associated with the signal un-
certainty characterized by a standard deviation of 10% of the 
signal amplitude. As can be seen in Fig. 1(c), the noise causes 
visibly significant distortion.  

 Frequency estimation bias: 

Test results are tabulated in Table III. Compared to the 
40dB noise input case, higher noise level increases frequency 
estimation bias by at least 10 times. Three-phase measurements 
improve estimation accuracy than single-phase measurements. 
Regardless, the estimation accuracy is still sufficiently high. 

 

Figure 1.  Test Waveforms: 59.5Hz Pure Cosine Wave with Noise 

Infiltration. (a). Sinusoidal wave with 40dB AWGN. (b). Local Zoom-in of 

the Waveform in (a). (c). Sinusoidal wave with 20dB AWGN. Orange curves 

are noiseless signals. 

TABLE III.  SUMMARY OF FREQUENCY ESTIMATION BIAS  

Case Details UKF-Single Phase UKF-Three Phase 

Steady-state  
unbalanced 

< 1×10-5 Hz < 5×10-6 Hz 

Steady-state 
harmonics 

< 1×10-6 Hz < 1×10-6 Hz 

Amplitude 
modulation 

< 5×10-6 Hz < 2×10-6 Hz 

Phase modulation < 1×10-6 Hz < 1×10-6 Hz 

Frequency ramping < 1×10-6 Hz < 1×10-6 Hz 

 

 Sensitivity to initial conditions: 

As shown in Table IV, similar to the 40dB noise input case, 
EKF-based approach is sensitive to the initial values of states 
𝑥1 and 𝑥2. Consequently, there is at least 75% chance that EKF-
based method does not converge. 

TABLE IV.  SUMMARY OF SENSITIVITY TO INITIAL CONDITIONS 

Case Details EKF-Three Phase UKF-Three Phase 

Frequency deviation 

±1Hz to ±5Hz 
Converge Converge 

Amplitude deviation 

±50% 
Diverge Converge 

Amplitude deviation 
±25% 

Diverge Converge 

Amplitude deviation 

±10% 
Converge Converge 

 

D. Influence of Sigma Point Selection on Estimation Bias 

Due to the nonlinearity of state equations, the frequency es-
timation based on UKF will inevitably result in sub-optimal so-
lutions, i.e. estimation biases. The tuning of UKF procedure, 
namely, the selection of parameters 𝛼, 𝛽 , and 𝜅 in (12)-(14) 
will affect frequency estimation results. This is summarized in 
Table V. UKF-three phase test is used in this simulation, where 
this nominal frequency is 60.5Hz. The value shown in the table 
is the maximum estimation bias in all types of tests.  

 

 



TABLE V.  INFLUENCE OF SIGMA POINT SELECTION ON BIASES IN 

FREQUENCY ESTIMATION 

Case Details 20dB Noise 40dB Noise 

𝛼 = 1 × 10−3 
𝛽 = 2, 𝜅 = 0 

5×10-4 Hz 5×10-4 Hz 

𝛼 = 0.1 
𝛽 = 2, 𝜅 = 0 

< 5×10-7 Hz < 5×10-7 Hz 

𝛼 = 0.1 
𝛽 = 4, 𝜅 = 0 

1.5×10-6 Hz 5×10-7 Hz 

𝛼 = 0.1 
𝛽 = 2, 𝜅 = 2 

5×10-7 Hz 5×10-7 Hz 

 

It can be concluded that sigma points should be carefully 
selected to achieve lowest estimation uncertainties. Even 
though 𝛼 = 1 × 10−3 is recommended in papers [12]-[14], it 
can be seen that this choice does not provide best estimation 
result in the context of power system frequency estimation. In 
practice, measurement noise may not necessarily be Gaussian. 
As a result, 𝛽 parameter should be tuned accordingly. 

V. CONCLUSIONS 

The paper proposes a UKF-based fundamental frequency 
calculation approach using single or three-phase waveform 
measurements. Simulations demonstrate the comparison of pro-
posed method with EKF-based method in terms of estimation 
bias, and sensitivity to initial conditions. The contributions are 
outlines as follows. 

 The characteristics of noise propagating through the non-
linear system equations are estimated more accurately with 
UT, which resulted in better mitigation of noise impact on 
fundamental frequency calculation with the application of 
UKF.  

 Despite the choice of initial conditions and the extreme 
nonlinearity of system equations, the proposed UKF-based 
method always converge to a solution. This is not observed 
in prior EKF-based method. 

 Sub-optimality is achieved by choosing appropriate sigma 
points in the proposed method, where frequency calcula-
tion error can be reduced to minimal level. 

 Simulations show that both single-phase and three-phase 
measurement based implementation will achieve sufficient 
frequency estimation accuracy, even when the noise level 
is as high as 10% of signal amplitude.  
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