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SUMMARY 
 
Loss of electric power leads to major economic, social, and environmental impacts. It is estimated that 
the Annual economic impacts from weather-related electric grid outages in the U.S. result in as high as  
$150 billion. Due to the high level of environmental exposure of the electric utility overhead 
infrastructure, the most dominant cause of electricity outages is weather impact. More than 70% of 
electric power outages are caused by weather, either directly (e.g., lightning strikes to the equipment,  
trees coming in contact with lines under high wind speeds), or indirectly due to weather-caused 
increases in equipment deterioration rates or overloading (e.g. insulation deterioration, line 
overloading due to high temperature causing high demand). This paper illustrate how the impact of 
severe weather can be significantly reduced, and in some cases even eliminated, by accurate prediction 
of where faults may occur and what equipment may be vulnerable. With this predicted assessment of  
network vulnerabilities and expected exposure, adequate mitigation approaches can be deployed.  

To solve the problem, variety of approaches have been deployed but none seem to be address ing 
the problem comprehensively. We are introducing a predictive approach that uses Big Data analytics 
based on machine learning using variety of utility measurements and data not coming from utility 
infrastructure, such as weather, lightning, vegetation, and geographical data, which also comes in great 
volumes, is necessary. The goal of this paper is to provide a comprehensive description of  the use of  
Big Data to assess weather impacts on utility assets. In the study reported in this paper a unif ied data 
framework that enables collection and spatiotemporal correlation of variety of data sets is developed.  
Different prediction algorithms based on linear and logistic regression are used.  The spatial and 
temporal dependencies between components and events in the smart grid are leveraged for the high 
accuracy of the prediction algorithms, and its capability to deal with missing and bad data. The s tudy 
approach is tested on following applications related to weather impacts on electric networks: 1) 
Outage prediction in Transmission, 2) Transmission Line Insulation Coordination, 3) Distribution 
Vegetation Management, 4) Distribution Transformer Outage Prediction, and 5) Solar Generation 
Forecast. The algorithms shows high accuracy of prediction for all applications of interest.  
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1. INTRODUCTION 
 
The electric utility applications have relied heavily on physical model-based solutions in the past. 
Such methods are not able to estimate or predict the dynamically changing impacts over time which 
makes it difficult to assess the unfolding deterioration of power grid infrastructure, anticipate fault 
location, and predict operating conditions [1]. The advancements in smart grid measurement 
technologies in recent years and wide availability of measurements coming from multiple domains 
have enabled the necessary conditions for development of new data-driven solutions.  

In recent years, a variety of power system data analytics studies in the literature have incorporated 
data-driven approaches based on various data mining techniques: regression models [2], clustering and 
classification [3], support vector machines [4], neural networks [5], deep learning [6], etc. Clus tering 
and classification methods have found their place in event classification applications based on PMU 
data. Support Vector Machines have proven to be powerful in dynamic stability analysis based on 
synchrophasor data. Neural network solutions have been used in various applications, e.g., optimal 
maintenance scheduling and optimal placement of various components in the network. Deep learning 
techniques are finding their way into various applications for real-time load forecasting and 
emergency management. Regression models have shown great performance by utilizing historical 
measurements to predict future events in the network through ether logistic or linear regression. 

This paper introduces a survey of Big Data (BD) applications based on the regression models 
capable of providing outage predictions and illustrates the possible mitigation strategies.  
 
2. USE OF BIG DATA FOR POWER SYSTEM STUDIES 
 
It is important to look into advancements in data analytics and identify the ways they can help improve 
the reliability of the system with advanced prediction methods. These prediction methods can mitigate 
outages, improve the resilience of the system, and reduce restoration time and cost: 
• With more information coming from the new measurements, and other data collected in many 

domains surrounding network-related events, the accuracy of algorithms used for  power sys tem 
applications can be improved. For example, the use of weather conditions correlated with 
lightning, soil and vegetation data can improve the predictive capabilities significantly.  

• The predictive capabilities can be used to move the decision-making practice from mostly 
reactive, which is dominant today, to more proactive one. If we are able to predict outages, we can 
significantly improve the overall reliability of the system by developing preventive mitigation 
measures.  

• Electric networks have experienced a number of changes in recent years, including the addition of  
renewable sources such as concentrated and distributed solar and wind generation, and electric 
vehicle integration. BD Analytics platform can provide an automatic platform to support the 
dynamics of these changes in the network caused by the variability and uncertainty. 
  

3. PREDICTIVE FRAMEWORK 
 
We Use several applications to illustrate how the proposed BD predictive framework overcomes 
obstacle such as [7]: 
• Data Management: The use of BD introduces challenges in data ingestion, cleansing, curation, and 

wrangling. Also, storing large volumes of data, dealing with data integration at different temporal 
and spatial scales, understanding that the data sets may contain bad and missing data,  and fac ing 
varying uncertainty levels from one set to another creates additional concerns.  

• Data Analytics: With the use of the graph-based machine learning methods one can achieve: 1) 
high accuracy of prediction based on modeling the spatial and temporal interdependencies 
between variables, Prediction at multiple temporal and spatial scales used in operation and 
maintenance, 3) robustness to missing and bad data by using variables from the nearby nodes.  

• Economic Impact: The BD Analytics enables one to define: 1) User-specific mitigation options for 
risk reduction, 2) risk minimization using optimization with different objectives and constrains. 3)  
Evaluation framework for comparison between the legacy solutions and BD solutions 
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3.1 Transmission Outage Prediction 
We utilized the knowledge from historical data to provide predictions of weather related outages in the 
transmission system 1-3 hours ahead. We added the use of spatial embeddings to the input data set [8]  
to capture the spatial interdependencies between nodes and events. The historical outage data was 
collected from Bonneville Power Administration (BPA) [9]. The Automated Surface Observing 
Systems (ASOS) program [10] data was used to collect the historical weather measurements  for the 
following parameters: Wind Direction [degrees], Wind Speed [knots], Wind Gust [knots], 
Temperature [F], Dew Point [F], Relative Humidity [%], Pressure [mb], Precipitation/Hour [inch], and 
Present Weather Codes. The National Digital Forecast Database (NDFD) [11] was used to extract the 
historical weather forecast data that is used for testing of the real-time outage probability mapping 
system. Three algorithms were implemented and tested: logistic regression (LR), logistic regression 
with spatial embeddings (LR spatial), and Collaborative Logistic Ensemble Classifier (CLEC) [12]. 
The results are presented in Table I [8]. We can observe that for all cases spatial solutions have better  
performances compared to conventional logistic regression algorithm. The CLEC algorithm 
outperforms both other solutions. Fig. 1 [8] presents the real-time outage probability maps. In ideal 
case, the predicted probability is high (red color) at the outage locations, and low (dark green color) 
everywhere else. The following can be observed from the maps in Fig. 1: 1) for the no-outage case, the 
predicted probability of outages was less than 60%; 2) for the cases with multiple outages in the 
network, the area with faults had points with high outage probability (over 80%), while the rest of  the 
network had probability lower than 60%. 
 
3.2 Insulation Coordination 
We used our method for optimal placement of line surge arresters that minimizes the overall risk of 
lightning related outages and disturbances, while staying within the required budgetary limits. We 
model the network and its surrounding impacts using multi-modal weighted graph that uses data 
coming from various sources. The developed risk model takes into account the accumulated impact of  
past lightning disturbances in order to produce more accurate estimate of insulator strength, and 
predicts insulator performances for the future lightning caused overvoltages using Gaussian 
Conditional Random Fields (GCRF) [13]. Linear programming (LP) [14] is used to find the LSA 
placement for which the global risk function is minimal. The method has been simulated and tested on 
section of the network containing 36 substations, 65 transmission lines, with a total of  1590 tow ers .  
The historical outage and lightning data for the period of 5 years were observed. The Risk Map is 
shown in Fig. 2. For each moment in time, it is possible to generate a unique risk map.  By averaging 
the set of risk maps for a period of time it is possible to develop a final risk map on a seasonal or 
yearly basis. Based on the cumulative risk map produced for a period of one year, and accompanying 
economic impact, the recommended number of line surge arresters (LSAs) is calculated to be 264, and 
optimal locations of the LSAs in terms of 
risk reduction are presented in Fig. 3. The 
presented configuration of LSAs is expec ted 
to reduce overall risk by 72%. This kind of 
result could help utilities make decision 
about installation of LSAs in an 
economically efficient way.  

Table I. Prediction performance w.r.t. different 
evaluation metrics [8]. 

Model Acc. AUC F1  Bias 
LR 0.8467 0.9278 0.8097 0.6821 
LR(spatial) 0.8624 0.9292 0.8242 0.7075 
CLEC 0.8919 0.9313 0.8532 0.7685 

 

                 
                                       a)                                                                                  b) 

 Figure 1. Probabilities and locations of outages for: a) no outage, b) lightning [8]. 
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        Fig. 2 Risk Map of the Network [14]. Fig. 3 Locations of 264 LSAs [14]. 
 
3.3 Vegetation Management 
We introduced the predictive data-driven method for vegetation management in distribution [15]. A 
model for spatiotemporal correlation of a variety of data is developed, which enables real-time 
analysis of the vegetation impact on the distribution feeders based on predictive risk maps. Predic tion 
algorithm is based on the GCRF regression predictor. The optimization algorithm is used to find the 
most cost-effective dynamic tree trimming schedule that minimize the overall risk of the netw ork for  
each quarter. The benefits of this method are confirmed on an actual utility distribution network in 
Texas. The area of the analyzed network is ~2,000 km2, containing approximately 200,000 poles,  and 
120,000 feeders. The historical data was collected from January 2011 up to the end of April of  2016.  
Over this period, 90% of collected data was used for training of the prediction algorithm, while the 
remaining 10% of outages at the end of 2015 and beginning of 2016 was used as testing set. The 
predicted risk map for 02/23/2016 is presented in Fig. 4. We can observe that the predicted risk value 
on the faulted section was 84%. An example of the developed tree trimming schedule for the first three 
months in 2016 is presented in Fig. 5. The zones with colors different than black represent the ranges 
of the network that must be trimmed before the designated deadline.  
 
3.4 Distribution Transformer (DT) Health Assessment 
We studied [16] the failures of step down transformers (22.9KV-220V) used in the distribution sec tors  
in South Korea. We collected the data for modeling outage events used for prediction and analysis 
starting from year 2012 up to year 2018, total of 237 events. The historical outages  are extracted for 
five causes; lighting, tree contact, snow, rain, and dust. Weather parameters considered in this  s tudy 
are: lightning, average temperature, highest temperature, relative humidity, maximum wind speed, 

            
       Fig. 4. Risk Map for 02/23/2016 [15].             Fig. 5. Quarterly Tree Trimming Schedule [15]. 
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wind gust, precipitation. The dates which have outages caused by 
weather are selected for Y=1 and the dates which don’t have any 
outages are presented as Y=0 and historical weather are extracted. 
Logistic regression is used for modeling a binary response (i.e., 
success/fail). This model estimates the probability of the response 
occurring P(X) = Pr (Y=1│X) through a linear function of 
explanatory variables X. In this study, it is natural that the 
response variable Y is a DT failure, i.e., 1 (failure) and 0 (no 
failure). Specifically, X is n × (p+1) design matrix where n is  the 
number of observations and p is the number of weather 
predictors. Naturally, the number of coefficients is eight by seven 
predictors and an intercept. The corresponding coefficients β of 
predictors designate the effect of the weather predictors on the 
probability of DT failure. To evaluate logistic regression, 
Receiver Operating Characteristics (ROC) graphs and The Area 
Under Curve (AUC) are used. The historical DT failure data is 
divided into the testing and training sets. The 90% of the total 
data set is selected for training. The remaining 10% of the data is  
used for the testing. The degree of high temperature (HT) is 
classified into three temperature thresholds such as 82.4℉, 86℉,  
and 89.6℉ in order to make interpretation of HT coefficient 
precise. The model reported the AUC of 0.796, 0.798 and 0.764 
for 82.4℉, 86℉, and 89.6℉, respectively as shown in Fig 6.  
 
4.5 Solar Generation Forecast 
As our last example we describe the use of BD analytics 
prediction for the solar generation based on spatial and temporal 
embeddings for a Random Forest Regression predictor. The 
Node2Vec framework was used [17] that learns feature 
representations for nodes in graphs. To convert the dataset us ing 
Node2Vec, a connected graph is created from the solar irradianc e 
grid. In order to achieve this, distances between locations are used 
as edge weights in a fully connected graph. Then, Node2Vec is 
used to convert solar data to the new feature space. Two temporal 
embeddings are created for the observed time period: Hour of  the 
day (0 to 23 value) and Season (winter, spring, summer, and fall).  
Then, the Random Forest Regression model is applied to predict a 
value for GHI. Results are presented in Tables 2-4. In the summer 

model (Table 2), weather measurements from June and July of 2017 are used for training while 
weather predictions for August 2017 are used for testing. Table 4 shows the results for the summer 
model. In the winter model (Table 3), weather 
measurements from October and November of  
2017 are used for training, and weather 
predictions for December 2017 are used for 
testing. The summer model performs better 
than the winter model. This is expected due to 
the higher number of clear sunny days in the 
summer when the correlation between SZA and 
GHI is very high. In the global model (Table 
4), weather measurements from December and 
August of 2017 are used for testing and the res t 
of the months of 2017 are used for training.  As  
expected, this model performs better than the 
winter model.  

Table 2. Results of the summer model 
Metric R2  MAE MSE RMSE 

Value 0.91  42.76 8615.9 92.8 
 

Table 3. Results for the winter model 
Metric R2 MAE MSE RMSE 

Value 0.85 27.3 5510 71.49 
 

Table 4. Results for the global model 
Metric R2 MAE MSE RMSE 

Value 0.89 33.4 7258.9 85.2 
 

 
a)   HT=82.4℉ 

 

 
b)   HT=86℉ 

 
c)   HT=89.6℉ 

Figure 6. ROC for classification 
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5. CONCLUSIONS 
 
Multiple applications related to weather impacts on electricity network have been analyzed: Outage 
prediction in Transmission, 2) Transmission Line Insulation Coordination, 3) Distribution Vegetation 
Management, 4) Distribution Transformer Outage Prediction, and 5) Solar Generation Forecast. This  
survey points out to great potential of predictive methods if the BD is available and properly utilized.  
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